Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

Awesome-Image-Quality-Assessment

A comprehensive collection of IQA papers
https://github.com/chaofengc/Awesome-Image-Quality-Assessment

Last synced: 1 day ago
JSON representation

  • Papers

    • Image Aesthetic Assessment

      • ECCV2024 - L993) | [Project](https://yeolj00.github.io/personal-projects/personalized-aesthetics/)
      • Arxiv 2024 - L904)
      • CVPR2023 - L789)
      • CVPR2023 - T/BAID) | [Bibtex](./iqa_ref.bib#L777-L782)
      • ACMMM 2024 - expert/) | [Github](https://github.com/yipoh/AesExpert) | [Bibtex](./iqa_ref.bib#L1037-L1042)
    • No Reference (NR)

      • Arxiv 2024 - L986)
      • CVPR 2024 - L961)
      • arXiv - wise quality map
      • arXiv - PyTorch) | Two branches for synthetic and authentic distortions
      • Arxiv 2024 - L954)
      • - L920)
      • WACV2024 - L865)
      • TIP2023 - PyTorch) | [Bibtex](./iqa_ref.bib#L892-L897)
      • ICCV2023 - IQA) | [Bibtex](./iqa_ref.bib#L798-L804)
      • CVPR2023 - L796) | [Github](https://github.com/avinabsaha/ReIQA)
      • CVPR2023 - L768)
      • AAAI2023 - IQA) | [Bibtex](./iqa_ref.bib#L745-L750)
      • AAAI2023 - L750)
      • - L743)
      • TIP2022 - L856)
      • TIP2022 - Videocoding/VCRNet) | [Bibtex](./iqa_ref.bib#L752-L761)
      • TMM2022 - L707)
      • CVPR2021 - L722)
      • arXiv - dimension attention, dual branch |
      • arXiv - consistency |
      • pdf - task with distortion prediction
      • arXiv - research/google-research/tree/master/musiq) / [Pytorch](https://github.com/anse3832/MUSIQ) | Multi-scale, transformer, Aspect Ratio Preserved (ARP) resizing
      • arXiv
      • pdf - aware hyper network
      • arXiv - IQA | NR | CVPR2020 | [Official](https://github.com/zhuhancheng/MetaIQA) | Meta-learning
      • arXiv
      • arXiv - NRQM)).
      • arXiv
      • arXiv - wise quality map
      • arXiv
      • pdf - based NR-IQA
      • arXiv
      • arXiv - PyTorch) | Two branches for synthetic and authentic distortions
      • pdf
      • pdf
      • pdf - IMage-Assessment)/[Tensorflow](https://github.com/idealo/image-quality-assessment) | Squared EMD loss
      • pdf - task: distortion learning and quality prediction
      • arXiv
      • arXiv - metric) | Traditional, Super resolution
      • arXiv
      • IEEE
      • pdf
      • pdf
      • pdf - II | NR | TIP2012 | [Official](https://github.com/utlive/BLIINDS2) |
      • pdf
      • pdf
      • pdf
      • Arxiv 2024 - L971)
      • CVPR 2024 - mcl/QCN?tab=readme-ov-file) | [Bibtex](./iqa_ref.bib#L1074-L1079)
    • Others

      • CVPR2024 - L978) | [Project](https://dsl-fiqa.github.io/)
      • - L1000) | [Github](https://github.com/TianheWu/Assessor360)
      • - L1016) | [Github](https://github.com/IntMeGroup/ESIQA)
      • Arxiv 2024 - L1035) | [Github](https://github.com/msu-video-group/adversarial-defenses-for-iqa) | [Project](https://videoprocessing.ai/benchmarks/iqa-defenses.html)
      • NeurIPS 2022 - L1025) | [Github](https://github.com/zwx8981/PerceptualAttack_BIQA)
      • arXiv - in-Norm Loss
      • ECCV 2024 - hjq/MS-SWD) | [Bibtex](./iqa_ref.bib#L1051-L1058)
      • CVPR 2023 - Flow) | [Bibtex](./iqa_ref.bib#L1060-L1065)
    • Explainable IQA

    • Unified IQA

    • AIGC IQA

    • Full Reference (FR)

      • arXiv
      • ECCV2022 - LPIPS) | [Bibtex](./iqa_ref.bib#L731-L736)
      • BMVC2022 - L729)
      • ACM MM2022 - geek/SRIF) | [Bibtex](./iqa_ref.bib#L709-L714)
      • arXiv
      • arXiv - supervised and positive-unlabeled (PU) learning |
      • arXiv - IQA) | Non-Aligned content reference, knowledge distillation
      • arXiv
      • arXiv - DISTS | FR | ACMM2021 | [Official](https://github.com/dingkeyan93/A-DISTS) |
      • arXiv
      • arXiv - SalCAR | FR| TCSVT2020 | []() | JND (Just-Noticeable-Difference)
      • pdf - resolution/) | Super-resolution
      • pdf
      • pdf
      • pdf - SSIM | FR | | [Project](https://ece.uwaterloo.ca/~z70wang/research/ssim/) | Traditional
      • pdf
      • arXiv
      • arXiv
    • ROI-based IQA

  • Uncategorized

  • Datasets

    • IQA datasets

      • arXiv - 2-PiQ | NR | CVPR2020 | [Official github](https://github.com/baidut/PaQ-2-PiQ) | 40k, 120k patches | 4M |
      • CVF
      • arXiv - 10k | NR | TIP2020 | [Project](http://database.mmsp-kn.de/koniq-10k-database.html) | 10k from [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/) | 1.2M |
      • arXiv
      • arXiv
      • pdf
      • arXiv
      • arXiv - 700k | FR | arXiv | [Project](http://database.mmsp-kn.de/kadid-10k-database.html) | 140k pristine / 700k distorted | 30 ratings (DCRs) per image. |
      • IEEE - 10k | FR | QoMEX2019 | [Project](http://database.mmsp-kn.de/kadid-10k-database.html) | 81 | 10k distortions |
      • pdf - Exp | FR | TIP2017 | [Project](https://ece.uwaterloo.ca/~k29ma/exploration/) | 4744 | 94k distortions |
      • pdf - -- | 20 | 1600 distortions |
      • pdf
      • pdf
      • pdf - -- | 30 | 866 distortions |
      • pdf
      • pdf
      • link - -- | 10 | 185 distortions |
      • arXiv - IQA | NR | ECCVW2024 | [Project](https://database.mmsp-kn.de/uhd-iqa-benchmark-database.html) | 6k (~3840x2160) | 20 ratings per image |