Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-mlvid
moment localization in videos
https://github.com/jiny419/awesome-mlvid
Last synced: 3 days ago
JSON representation
-
Other Papers
- Awesome-LLM-hallucination - LLM hallucination paper list.
-
Open LLM
-
Weakly-supervised learning
- AlpacaEval Leaderboard - An Automatic Evaluator for Instruction-following Language Models
- Open LLM Leaderboard - aims to track, rank and evaluate LLMs and chatbots as they are released.
- Chatbot Arena Leaderboard - a benchmark platform for large language models (LLMs) that features anonymous, randomized battles in a crowdsourced manner.
- Open Ko-LLM Leaderboard - The Open Ko-LLM Leaderboard objectively evaluates the performance of Korean Large Language Model (LLM).
- Yet Another LLM Leaderboard - Leaderboard made with LLM AutoEval using Nous benchmark suite.
- OpenCompass 2.0 LLM Leaderboard - OpenCompass is an LLM evaluation platform, supporting a wide range of models (InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.
- Gemma - Gemma is built for responsible AI development from the same research and technology used to create Gemini models.
- Mistral - Mistral-7B-v0.1 is a small, yet powerful model adaptable to many use-cases including code and 8k sequence length. Apache 2.0 licence.
- Mixtral 8x7B - a high-quality sparse mixture of experts model (SMoE) with open weights.
-
- ckpt - 10 | [Paper](https://arxiv.org/pdf/2210.02414.pdf) | [The GLM-130B License](https://github.com/THUDM/GLM-130B/blob/799837802264eb9577eb9ae12cd4bad0f355d7d6/MODEL_LICENSE) |
- ckpt - 06 | [Blog](https://medium.com/yandex/yandex-publishes-yalm-100b-its-the-largest-gpt-like-neural-network-in-open-source-d1df53d0e9a6) | [Apache 2.0](https://github.com/yandex/YaLM-100B/blob/14fa94df2ebbbd1864b81f13978f2bf4af270fcb/LICENSE) |
- ckpt - 04 | [Paper](https://arxiv.org/pdf/2204.06745.pdf) | [Apache 2.0](https://github.com/EleutherAI/gpt-neox/blob/main/LICENSE) |
- ckpt - 03 | [Github](https://github.com/EleutherAI/gpt-neo) | [MIT](https://github.com/EleutherAI/gpt-neo/blob/23485e3c7940560b3b4cb12e0016012f14d03fc7/LICENSE) |
- Paper - |
- Paper - |
- Paper - |
- Paper - |
- Paper - |
- Paper - |
- Paper - |
- Paper - |
- api - 08 | [Paper](https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf) | - |
- Paper - |
- Open LLM Leaderboard - aims to track, rank and evaluate LLMs and chatbots as they are released.
- api - 05 | [Paper](https://arxiv.org/pdf/2205.01068.pdf) | [OPT-175B License Agreement](https://github.com/facebookresearch/metaseq/blob/edefd4a00c24197486a3989abe28ca4eb3881e59/projects/OPT/MODEL_LICENSE.md) |
- api - 11 | [Paper](https://arxiv.org/pdf/2211.05100.pdf) | [BigScience RAIL License v1.0](https://huggingface.co/spaces/bigscience/license) |
- api - 05 | [Paper](https://arxiv.org/pdf/2005.14165.pdf) | - |
- Paper - |
- ckpt - 05 | [Homepage](https://falconllm.tii.ae) | [Apache 2.0](https://huggingface.co/tiiuae) |
- ckpt - 05 | [Paper](https://arxiv.org/pdf/2205.05131v1.pdf) | [Apache 2.0](https://huggingface.co/google/ul2) |
- api - 10 | [Paper](https://arxiv.org/pdf/2012.00413.pdf) | - |
- ckpt - 09 | [Github](https://github.com/BlinkDL/RWKV-LM) | [Apache 2.0](https://huggingface.co/BlinkDL/rwkv-4-pile-7b) |
- ckpt - 04 | [Paper](https://arxiv.org/pdf/2104.12369.pdf) | [Apache 2.0](https://github.com/huawei-noah/Pretrained-Language-Model/blob/4624dbadfe00e871789b509fe10232c77086d1de/PanGu-%CE%B1/LICENSE) |
-
Instruction finetuned LLM
- ckpt - 3 |-| [Apache 2.0](https://github.com/togethercomputer/OpenChatKit/blob/e64116eb569fcb4e0b993c5fab5716abcb08c7e5/LICENSE) |
- Paper - |
- Paper - |
- ckpt - 11|[Paper](https://arxiv.org/pdf/2211.01786.pdf)| [BigScience RAIL License v1.0](https://huggingface.co/spaces/bigscience/license) |
- api - 03 | [Paper](https://arxiv.org/pdf/2203.02155.pdf) | - |
- ckpt - 11| [Paper](https://arxiv.org/pdf/2211.09085.pdf)| [CC-BY-NC-4.0](https://github.com/paperswithcode/galai/blob/3a724f562af1a0c8ff97a096c5fbebe579e2160f/LICENSE-MODEL.md) |
- ckpt - 10|[Paper](https://arxiv.org/pdf/2110.08207.pdf)| [Apache 2.0](https://huggingface.co/bigscience/T0) |
- ckpt - 03 | [Blog](https://www.yitay.net/blog/flan-ul2-20b)| [Apache 2.0](https://huggingface.co/google/flan-ul2) |
- ckpt - 10|[Paper](https://arxiv.org/pdf/2210.11416.pdf)| [Apache 2.0](https://github.com/google-research/t5x/blob/776279bdacd8c5a2d3e8ce0f2e7064bd98e98b47/LICENSE) |
- demo - 03|[Github](https://github.com/tatsu-lab/stanford_alpaca)| [CC BY NC 4.0](https://github.com/tatsu-lab/stanford_alpaca/blob/main/WEIGHT_DIFF_LICENSE) |
- ckpt - 06|[Paper](https://arxiv.org/pdf/2306.02707)|[Non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) |
-
RLHF LLM
-
-
MLVU Frameworks
-
Weakly-supervised learning
- DeepSpeed - DeepSpeed is a deep learning optimization library that makes distributed training and inference easy, efficient, and effective.
- Megatron-DeepSpeed - DeepSpeed version of NVIDIA's Megatron-LM that adds additional support for several features such as MoE model training, Curriculum Learning, 3D Parallelism, and others.
-
-
Milestone Papers
- Scaling Laws for Neural Language Models
- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
- ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
- Evaluating Large Language Models Trained on Code
- Attention Is All You Need
- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
- ZeRO: Memory Optimizations Toward Training Trillion Parameter Models
- Scaling Laws for Neural Language Models
- Language models are few-shot learners
- Evaluating Large Language Models Trained on Code
-
Others
-
Weakly-supervised learning
-
-
About The Project
-
Contact
-
Acknowledgments
-
Books
-
Weakly-supervised learning
- Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs - it comes with a [GitHub repository](https://github.com/benman1/generative_ai_with_langchain) that showcases a lot of the functionality
- Build a Large Language Model (From Scratch) - A guide to building your own working LLM.
-
RLHF LLM
- Generative AI with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs - it comes with a [GitHub repository](https://github.com/benman1/generative_ai_with_langchain) that showcases a lot of the functionality
-
-
MLVU Papers
-
Tutorials
-
Weakly-supervised learning
-
-
Courses
-
Weakly-supervised learning
-
-
Opinions
-
Weakly-supervised learning
- A Stage Review of Instruction Tuning - 06-29] [Yao Fu]
- Large Language Models: A New Moore's Law - 10-26\]\[Huggingface\]
-
-
Other Useful Resources
-
Weakly-supervised learning
- Arize-Phoenix - Open-source tool for ML observability that runs in your notebook environment. Monitor and fine tune LLM, CV and Tabular Models.
-
Programming Languages
Categories
Sub Categories
Keywords
deep-learning
2
gpt-3
2
language-model
2
transformers
2
evaluation
1
foundation-models
1
instruction-following
1
large-language-models
1
leaderboard
1
nlp
1
rlhf
1
deepspeed-library
1
gpt
1
gpt-2
1
billion-parameters
1
compression
1
data-parallelism
1
gpu
1
inference
1
machine-learning
1
mixture-of-experts
1
model-parallelism
1
pipeline-parallelism
1
pytorch
1
trillion-parameters
1
zero
1