Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

awesome-category-theory

A curated list of awesome Category Theory resources.
https://github.com/madnight/awesome-category-theory

Last synced: about 6 hours ago
JSON representation

  • Archive

    • Functor theory - Explores the concept of exact categories and the theory of derived functors, building upon earlier work by Buchsbaum. Freyd investigates how properties and statements applicable to abelian groups can extend to arbitrary exact categories. Freyd aims to formalize this observation into a metatheorem, which would simplify categorical proofs and predict lemmas. Peter J. Freyd's dissertation, presented at Princeton University (1960)
    • Algebra valued functors in general and tensor products in particular - Discusses the concept of valued functors in category theory, particularly focusing on tensor products. Freyd explores the application of algebraic theories in non-standard categories, starting with the question of what constitutes an algebra in the category of sets, using category predicates without elements. The text outlines the axioms of a group using category theory language, emphasizing objects and maps. Peter Freyd (1966)
    • Continuous Yoneda Representation of a small category - Discusses the embedding of a small category A into the category of contravariant functors from A to Set (the category of sets), which preserves inverse limits but does not generally preserve direct limits. Kock introduces a "codensity monad" for any functor from a small category to a left complete category and explores the universal generator for this monad. He demonstrates that the Yoneda embedding followed by this generator provides a full and faithful embedding that is both left and right continuous. Additionally, the relationship with Isbell's adjoint conjugation functors and the definition of generalized (direct and inverse) limit functors are addressed, by Anders Kock (1966).
    • Abstract universal algebra - Explores advanced subjects in the realm of universal algebra. The core content is organized into two chapters, each addressing different aspects of universal algebra within the framework of category theory. The first chapter introduces the concept of triplable categories, inspired by the theory of modules over a ring, and explores the equivalence between categories of triples in any given category and theories over that category. In the second chapter, Davis shifts focus to equational systems of functors, a more generalized approach to algebra that encompasses both the triplable and structure category theories. Dissertation by Robert Clay Davis (1967)
    • A triple miscellany: some aspects of the theory of algebras over a triple - Explores the field of universal algebra with a particular focus on the concept of algebras over a triple. The work is grounded in the realization that categories of algebras, traditionally defined with finitary operations and satisfying a set of equations, can be extended to include infinitary operations as well, thereby broadening the scope of universal algebra. Manes starts by discussing the conventional understanding of universal algebra, tracing back to G.D. Birkhoff's definition in the 1930s, and then moves to explore how this definition can be expanded by considering sets with infinitary operations. Dissertation by Ernest Gene Manes (1967)
    • Algebraic theories - Covers topics such as the fundamentals of algebraic theories, free models, special theories, the completeness of algebraic categories, and extends to more complex concepts like commutative theories, free theories, and the Kronecker product, among others. The notes also touch on the rings-theories analogy proposed by F. W. Lawvere, suggesting an insightful correlation between rings/modules and algebraic theories/models. Gavin C. Wraith (1975)
    • Algebra valued functors in general and tensor products in particular - Discusses the concept of valued functors in category theory, particularly focusing on tensor products. Freyd explores the application of algebraic theories in non-standard categories, starting with the question of what constitutes an algebra in the category of sets, using category predicates without elements. The text outlines the axioms of a group using category theory language, emphasizing objects and maps. Peter Freyd (1966)
    • Continuous Yoneda Representation of a small category - Discusses the embedding of a small category A into the category of contravariant functors from A to Set (the category of sets), which preserves inverse limits but does not generally preserve direct limits. Kock introduces a "codensity monad" for any functor from a small category to a left complete category and explores the universal generator for this monad. He demonstrates that the Yoneda embedding followed by this generator provides a full and faithful embedding that is both left and right continuous. Additionally, the relationship with Isbell's adjoint conjugation functors and the definition of generalized (direct and inverse) limit functors are addressed, by Anders Kock (1966).
    • Abstract universal algebra - Explores advanced subjects in the realm of universal algebra. The core content is organized into two chapters, each addressing different aspects of universal algebra within the framework of category theory. The first chapter introduces the concept of triplable categories, inspired by the theory of modules over a ring, and explores the equivalence between categories of triples in any given category and theories over that category. In the second chapter, Davis shifts focus to equational systems of functors, a more generalized approach to algebra that encompasses both the triplable and structure category theories. Dissertation by Robert Clay Davis (1967)
    • A triple miscellany: some aspects of the theory of algebras over a triple - Explores the field of universal algebra with a particular focus on the concept of algebras over a triple. The work is grounded in the realization that categories of algebras, traditionally defined with finitary operations and satisfying a set of equations, can be extended to include infinitary operations as well, thereby broadening the scope of universal algebra. Manes starts by discussing the conventional understanding of universal algebra, tracing back to G.D. Birkhoff's definition in the 1930s, and then moves to explore how this definition can be expanded by considering sets with infinitary operations. Dissertation by Ernest Gene Manes (1967)
    • Limit Monads in Categories - The work introduces the notion that the category of complete categories is monadic over the category of all categories, utilizing a family of monads associated with various index categories to define "completeness." A significant portion of the thesis is dedicated to defining associative and regular associative colimits, arguing for their naturalness and importance in category theory. Dissertation by Anders Jungersen Kock (1967)
    • V-localizations and V-triples - This work focuses on two primary objectives within category theory. The first goal is to define and study Y-localizations of Y-categories, using a model akin to localizations in ordinary categories, involving certain conditions related to isomorphisms and the existence of unique Y-functors. The second aim is to explore the relationship between Y-localizations and V-triples, presenting foundational theories and examples to elucidate these concepts. Harvey Eli Wolff's dissertation (1970)
    • Symmetric closed categories - This work is an in-depth exploration of category theory, focusing on closed categories, monoidal categories, and their symmetric counterparts. It discusses foundational concepts like natural transformations, tensor products, and the structure of morphisms, emphasizing their additional algebraic or topological structures. W. J. de Schipper (1975)
    • Limit Monads in Categories - The work introduces the notion that the category of complete categories is monadic over the category of all categories, utilizing a family of monads associated with various index categories to define "completeness." A significant portion of the thesis is dedicated to defining associative and regular associative colimits, arguing for their naturalness and importance in category theory. Dissertation by Anders Jungersen Kock (1967)
    • On the concreteness of certain categories - This work discusses the concept of concreteness in categories, stating that a concrete category is one with a faithful functor to the category of sets, and must be locally-small. He highlights the homotopy category of spaces as a prime example of a non-concrete category, emphasizing its abstract nature due to the irrelevance of individual points within spaces and the inability to distinguish non-homotopic maps through any functor into concrete categories. Peter Freyd (1969)
    • V-localizations and V-triples - This work focuses on two primary objectives within category theory. The first goal is to define and study Y-localizations of Y-categories, using a model akin to localizations in ordinary categories, involving certain conditions related to isomorphisms and the existence of unique Y-functors. The second aim is to explore the relationship between Y-localizations and V-triples, presenting foundational theories and examples to elucidate these concepts. Harvey Eli Wolff's dissertation (1970)
    • Symmetric closed categories - This work is an in-depth exploration of category theory, focusing on closed categories, monoidal categories, and their symmetric counterparts. It discusses foundational concepts like natural transformations, tensor products, and the structure of morphisms, emphasizing their additional algebraic or topological structures. W. J. de Schipper (1975)
    • Algebraic theories - Covers topics such as the fundamentals of algebraic theories, free models, special theories, the completeness of algebraic categories, and extends to more complex concepts like commutative theories, free theories, and the Kronecker product, among others. The notes also touch on the rings-theories analogy proposed by F. W. Lawvere, suggesting an insightful correlation between rings/modules and algebraic theories/models. Gavin C. Wraith (1975)
    • On the concreteness of certain categories - This work discusses the concept of concreteness in categories, stating that a concrete category is one with a faithful functor to the category of sets, and must be locally-small. He highlights the homotopy category of spaces as a prime example of a non-concrete category, emphasizing its abstract nature due to the irrelevance of individual points within spaces and the inability to distinguish non-homotopic maps through any functor into concrete categories. Peter Freyd (1969)
  • Articles

Sub Categories