Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-scientific-machine-learning
A curated list of awesome Scientific Machine Learning (SciML) papers, resources and software
https://github.com/MartinuzziFrancesco/awesome-scientific-machine-learning
Last synced: 6 days ago
JSON representation
-
Papers
-
Neural Operators
- `pub` - 229._
- `arxiv`
- `pub` - 229._
- `pub` - informed-DeepONets) <br> Wang, Sifan, Hanwen Wang, and Paris Perdikaris <br> _Science advances 7, no. 40 (2021): eabi8605._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `pub` - 229._
- `arxiv`
- `pub` - 229._
-
Neural Differential Equations
- `pub`
- `arxiv`
- `pub` - MIT/StiffNeuralODE) <br> Kim, Suyong, Weiqi Ji, Sili Deng, Yingbo Ma, and Christopher Rackauckas <br> _Chaos: An Interdisciplinary Journal of Nonlinear Science 31, no. 9 (2021): 093122_
- `pub` - nn) <br> Greydanus, Samuel, Misko Dzamba, and Jason Yosinski <br> _Advances in neural information processing systems 32 (2019)._
- `pub` - neural-odes) <br> Dupont, Emilien, Arnaud Doucet, and Yee Whye Teh <br> _Advances in Neural Information Processing Systems 32 (2019)._
- `pub`
- `arxiv` - lstms) <br> Lechner, Mathias, and Ramin Hasani <br> _arXiv preprint arXiv:2006.04418 (2020)._
- `pub` - kidger/NeuralCDE) <br> Kidger, Patrick, James Morrill, James Foster, and Terry Lyons <br> _Advances in Neural Information Processing Systems 33 (2020): 6696-6707._
- `arxiv`
-
Physics Informed NNs
-
Model Discovery
-
-
Software
-
Julia
- `code`
- `code`
- `code`
- Scientific Machine Learning (Sciml) - comprehensive list of the packages provided, for a full description please check out their website.
-
Python
-
-
Books
-
Videos
-
Contributions Guidelines
-
Papers
-
Programming Languages
Sub Categories
Keywords
dynamical-systems
5
neural-differential-equations
5
scientific-machine-learning
5
deep-learning
4
differential-equations
4
machine-learning
4
neural-networks
3
differentialequations
3
pytorch
3
neural-network
3
pinn
3
neural-ode
2
pde
2
stochastic-differential-equations
2
sciml
2
nonlinear-dynamics
2
scientific-ml
2
scientific-ai
2
python
2
ode
2
jax
2
physics-informed-learning
2
partial-differential-equations
2
delay-differential-equations
2
ordinary-differential-equations
2
neural-pde
1
neural-sde
1
neural-jump-diffusions
1
neural-dde
1
stochastic-processes
1
spde
1
sde
1
scientific
1
r
1
numerical
1
julia
1
differential-algebraic-equations
1
dde
1
dae
1
tensorflow
1
paddle
1
operator
1
multi-fidelity-data
1
deeponet
1
system-identification
1
sparse-regression
1
model-discovery
1
equinox
1
physics-informed-neural-networks
1
pde-solver
1