Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-ts-anomaly-detection-datasets
Extensive collection of tabular time-series anomaly detection datasets.
https://github.com/OliverHennhoefer/awesome-ts-anomaly-detection-datasets
Last synced: 3 days ago
JSON representation
-
1.1 Univariate
-
[The Mackey-Glass Anomaly Benchmark](https://zenodo.org/records/3760086) (MGAB)
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- MGAB
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
- Time Series Encodings with Temporal Convolutional Networks
-
[Yahoo! S5](https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70)
-
[AIOps Competition](https://github.com/NetManAIOps/KPI-Anomaly-Detection/tree/master)
- AIOps 2018 - challenge.com/home/competition/1484452272200032281)),
- NetManAIOps
- AIOps 2020 - challenge.com/home/competition/1484441527290765368))
- AIOps 2019 - challenge.com/home/competition/1484446614851493956)),
-
[HexagonML Competition](https://compete.hexagon-ml.com/practice/competition/39/#description)
-
-
1.2 Multivariate
-
[Zenodo](https://zenodo.org/search?q=anomaly%20detection%20time%20series&f=resource_type%3Adataset&f=access_status%3Aopen&f=file_type%3Acsv&f=file_type%3Atxt&f=file_type%3Azip&f=file_type%3Ahdf5&f=file_type%3Axlsx&l=list&p=1&s=10&sort=bestmatch) 🌐
- Disk Aware Discord Discovery: Finding Unusual Time-series in Terabyte-sized Datasets
- Matrix Profile XIII: Time Series Snippets: A New Primitive for Time Series Data Mining
- Matrix Profile XXIV: Scaling Time Series Anomaly Detection to Trillions of Datapoints and Ultra-fast Arriving Data Streams
- Parameter-Free Discovery of Arbitrary Length Anomalies in Massive Time Series Archives
- HOT SAX: Finding the Most Unusual Time Series Subsequence: Algorithms and Applications
- Time-Series Discords
- MERLIN++
-
[UCR Time Series Anomaly Archive (Download Link)](https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip) 💼
-
[EDEN ISS 2020 Telemetry Dataset](https://zenodo.org/records/11485183)
-
[SUTD & iTrust Dataset Collection](https://itrust.sutd.edu.sg/itrust-labs_datasets/)
-
[Wind Turbine (SCADA) For Early Fault Detection](https://zenodo.org/records/10958775)
-
[Tennessee Eastman Process Simulation](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1) (TEP)
-
[Server Machine Dataset](https://github.com/NetManAIOps/OmniAnomaly) (SMD)
-
[Application Server Dataset](https://github.com/zhhlee/InterFusion/tree/main) (ASD)
-
[Soil Moisture Active Passive](https://nsidc.org/data/smap/data) (SMAP) and [Mars Science Laboratory](https://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/Mars/Mars.html) (MSL)
-
[3W](https://github.com/petrobras/3W) (Petrobas)
-
[Localization Data for Person Activity](https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity)
-
[Pooled Server Metric](https://github.com/eBay/RANSynCoders/tree/main/data) (PSM)
- Practical Approach to Asynchronous Multivariate Time Series Anomaly Detection and Localization - Time Synchronization in Neural Networks for Multivariate Time Series Anomaly Detection](https://ieeexplore.ieee.org/document/9413847)
-
[Time-Series Benchmarking Suite for Univariate Anomaly Detection](https://github.com/TheDatumOrg/TSB-UAD) (TSB-UAD) 💼
-
Programming Languages
Categories
Sub Categories
[The Mackey-Glass Anomaly Benchmark](https://zenodo.org/records/3760086) (MGAB)
19
[Zenodo](https://zenodo.org/search?q=anomaly%20detection%20time%20series&f=resource_type%3Adataset&f=access_status%3Aopen&f=file_type%3Acsv&f=file_type%3Atxt&f=file_type%3Azip&f=file_type%3Ahdf5&f=file_type%3Axlsx&l=list&p=1&s=10&sort=bestmatch) 🌐
7
[AIOps Competition](https://github.com/NetManAIOps/KPI-Anomaly-Detection/tree/master)
4
[Soil Moisture Active Passive](https://nsidc.org/data/smap/data) (SMAP) and [Mars Science Laboratory](https://pds-atmospheres.nmsu.edu/data_and_services/atmospheres_data/Mars/Mars.html) (MSL)
3
[SUTD & iTrust Dataset Collection](https://itrust.sutd.edu.sg/itrust-labs_datasets/)
3
[EDEN ISS 2020 Telemetry Dataset](https://zenodo.org/records/11485183)
2
[HexagonML Competition](https://compete.hexagon-ml.com/practice/competition/39/#description)
2
[Wind Turbine (SCADA) For Early Fault Detection](https://zenodo.org/records/10958775)
1
[Time-Series Benchmarking Suite for Univariate Anomaly Detection](https://github.com/TheDatumOrg/TSB-UAD) (TSB-UAD) 💼
1
[Application Server Dataset](https://github.com/zhhlee/InterFusion/tree/main) (ASD)
1
[UCR Time Series Anomaly Archive (Download Link)](https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip) 💼
1
[Localization Data for Person Activity](https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity)
1
[Yahoo! S5](https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70)
1
[3W](https://github.com/petrobras/3W) (Petrobas)
1
[Pooled Server Metric](https://github.com/eBay/RANSynCoders/tree/main/data) (PSM)
1
[Server Machine Dataset](https://github.com/NetManAIOps/OmniAnomaly) (SMD)
1
[Tennessee Eastman Process Simulation](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1) (TEP)
1