Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome_pointcloud_process
https://github.com/qxiaofan/awesome_pointcloud_process
Last synced: 3 days ago
JSON representation
-
点云匹配&配准&对齐&注册
-
商用
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- Generalized-ICP
- [IROS2018
- [CVPR2019
- [CVPR2019 - Based Randomized Approach for Robust Point Cloud Registration without Correspondences.
- [CVPR2019
- [CVPR - Set Registration using Gaussian Filter and Twist Parameterization.
- [ICCV2019 - to-End Deep Neural Network for 3D Point Cloud Registration.
- [ICRA2019 - MatchNet: Learning to Match Keypoints across 2D Image and 3D Point Cloud.
- [ICRA2019 - overlap 3-D point cloud registration for outlier rejection.
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- [IROS2018
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- [IROS2018
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- [IROS2018
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- [IROS2018
- An ICP variant using a point-to-line metric
- Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration
- Metric-Based Iterative Closest Point Scan Matching for Sensor Displacement Estimation
- NICP: Dense Normal Based Point Cloud Registration
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
- An ICP variant using a point-to-line metric
-
-
点云数据集
-
商用
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [ShapeNet
- [PartNet
- [S3DIS - Scale 3D Indoor Spaces Dataset.
- [ScanNet - annotated 3D Reconstructions of Indoor Scenes.
- [Stanford 3D
- [UWA Dataset
- [Princeton Shape Benchmark
- [ASL Datasets Repository(ETH)
- [Large-Scale Point Cloud Classification Benchmark(ETH)
- [Robotic 3D Scan Repository - dimensional laser scans gathered at two unique planetary analogue rover test facilities in Canada.
- [IQmulus & TerraMobilita Contest
- [Oakland 3-D Point Cloud Dataset - D point cloud laser data collected from a moving platform in a urban environment.
- [Robotic 3D Scan Repository
- [Ford Campus Vision and Lidar Data Set - 250 pickup truck.
- [The Stanford Track Collection - 64E S2 LIDAR.
- [WAD
- [nuScenes - scale autonomous driving dataset.
- [PreSIL - wise segmentation (point clouds), ground point labels (point clouds), and detailed annotations for all vehicles and people. [[paper](https://arxiv.org/abs/1905.00160)]
- [PedX - resolution (12MP) stereo images and LiDAR data along with providing 2D and 3D labels of pedestrians. [[ICRA 2019 paper](https://arxiv.org/abs/1809.03605)]
- [SynthCity
- [Lyft Level 5 - labelled 3D bounding boxes of traffic agents, an underlying HD spatial semantic map.
- [SemanticKITTI
- [Oxford Robotcar
- [WAD
- [WAD
- [Ford Campus Vision and Lidar Data Set - 250 pickup truck.
- [WAD
- [WAD
- [WAD
- [WAD
- [PartNet
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
- [WAD
-
-
点云识别&分类
-
点云匹配质量评估
-
商用
-
-
点云分割
-
商用
- 基于局部表面凸性的散乱点云分割算法研究
- 三维散乱点云分割技术综述
- 基于聚类方法的点云分割技术的研究
- SceneEncoder: Scene-Aware Semantic Segmentation of Point Clouds with A Learnable Scene Descriptor
- From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized 3D Point Clouds
- Learning and Memorizing Representative Prototypes for 3D Point Cloud Semantic and Instance Segmentation
- JSNet: Joint Instance and Semantic Segmentation of 3D Point Clouds
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
- [3DV2017
- [CVPR2019 - Instance Segmentation of 3D Point Clouds with Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields.
- [CVPR2019 - grained and Hierarchical Shape Segmentation.
- [IROS2019
- [ICRA2017
-
-
3D/点云目标检索
-
商用
-
-
点云三维重建
-
商用
- 改进的点云数据三维重建算法
- [AAAI2018
- [CVPR2019 - Scale Outdoor Scenes.
- [AAAI2019
-
-
点云其它
-
点云标注工具
-
点云去噪&滤波
-
点云线、面拟合
Programming Languages
Categories