Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
awesome-instruction-learning
Papers and Datasets on Instruction Tuning and Following. ✨✨✨
https://github.com/RenzeLou/awesome-instruction-learning
Last synced: 3 days ago
JSON representation
-
5. 📊 Analyses
-
5.3 Robustness and Safety
-
5.4 Evaluation
- [pdf - v2-suite-6551b56e743e6349aab45101)]
- [pdf - lab/instruct-eval)]; [[leaderboard](https://declare-lab.net/instruct-eval/)].
- [pdf - instruct)].
- [pdf - instruct)].
- [pdf - lab/instruct-eval)]; [[leaderboard](https://declare-lab.net/instruct-eval/)].
- [pdf - v2-suite-6551b56e743e6349aab45101)]
-
5.5 Negation
-
5.1 Scale
- [pdf - coai/UDIT)].
- [pdf - workshop/t-zero)]; [[corpus](https://github.com/bigscience-workshop/promptsource)].
- [pdf - research/flan)].
- [pdf - ul2)].
- [pdf - t5)].
- [pdf - research/prompt-tuning)].
- [pdf - research/FLAN/tree/main/flan/v2)]; [[corpus](https://huggingface.co/datasets/SirNeural/flan_v2)].
- [pdf - coai/UDIT)].
- [pdf - t5)].
-
5.2 Explanability
- [pdf - demonstrations)].
- [pdf - waywardness)].
- [pdf - nlp/WhatICLLearns)].
- [pdf - transformers)].
- [pdf - based-demonstration-selection)].
- [pdf - research/tree/master/incontext)].
- [pdf - shot-learning)].
- [pdf - nlp/WhatICLLearns)].
- [pdf - transformers)].
- [pdf - based-demonstration-selection)].
- [pdf - demonstrations)].
- [pdf - shot-learning)].
-
5.6 Complexity
-
5.7 Other Papers
-
-
4. 🗂️ Taxonomy
-
4.1 Entailment-oriented Instruction
-
4.2 PLM-oriented Instruction
- [pdf - prompt)].
- [pdf - coai/PPT)].
- [pdf - prompt)].
- [pdf - coai/PPT)].
- [pdf - tuning-v2)].
- [pdf - tuning)].
- [pdf - prompts)].
- [pdf - nlp/LM-BFF)].
- this repository
- [pdf - coai/PPT)].
- [pdf - prompt)].
- [pdf - tuning-v2)].
- [pdf - tuning)].
-
4.3 Human-oriented Instruction
-
-
6. 🤖 Applications
-
6.1 Human-Computer Interaction
-
6.2 Data and Feature Augmentation
-
6.3 General-purpose Language Models
-
6.4 Other Papers
-
-
3. 📚 Corpora
-
❤️ Contribution
-
2. 🎓 Surveys and Tutorials
- [pdf - instruction-learning)]. ![comprehensive](https://img.shields.io/badge/comprehensive-FFA07A)
- [pdf - FFA07A)
- [pdf - 9cf)
- [pdf - context demonstrations](https://img.shields.io/badge/demonstrations-FFB6C1)
- [pdf - reasoning)]. ![reasoning](https://img.shields.io/badge/reasoning-9cf)
- [pdf - 9cf)
- [pdf - 9cf)
- [pdf - context demonstrations](https://img.shields.io/badge/demonstrations-FFB6C1)
- [pdf - 9cf)
- [pdf - reasoning)]. ![reasoning](https://img.shields.io/badge/reasoning-9cf)
- [pdf - 90EE90)
- comprehensive - context instruction, including ![prompt](https://img.shields.io/badge/prompt-90EE90), few-shot ![in-context demonstrations](https://img.shields.io/badge/demonstrations-FFB6C1), and CoT ![reasoning](https://img.shields.io/badge/reasoning-9cf).
-
⭐ Star History
-
7.5 Other Papers
- ![Star History Chart - history.com/#RenzeLou/awesome-instruction-learning&Date)
-
-
7. 📖 Extended Reading
-
7.1 Instruction Induction
-
7.2 ChatGPT-related Papers
-
7.3 Human Feedback vs. Model Feedback
-
7.4 Scalable Oversight and Alignment
-
7.5 Other Papers
-
Categories
Sub Categories
6.1 Human-Computer Interaction
30
4.2 PLM-oriented Instruction
28
5.2 Explanability
26
4.3 Human-oriented Instruction
23
5.1 Scale
17
6.4 Other Papers
15
4.1 Entailment-oriented Instruction
14
7.2 ChatGPT-related Papers
13
7.3 Human Feedback vs. Model Feedback
12
5.3 Robustness and Safety
11
7.5 Other Papers
9
6.3 General-purpose Language Models
9
6.2 Data and Feature Augmentation
9
5.4 Evaluation
8
5.7 Other Papers
7
7.1 Instruction Induction
6
5.6 Complexity
6
7.4 Scalable Oversight and Alignment
3
5.5 Negation
2