Awesome-Parameter-Efficient-Transfer-Learning
  
  
    Collection of awesome parameter-efficient fine-tuning resources.  
    https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning
  
        Last synced: 3 days ago 
        JSON representation
    
- 
            
๐ <span id="head1"> *Papers* </span>
- 
                    
Adapter Tuning
- [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)   
 - [Paper - ViT)]    
 - [Paper - Adapter)]   
 - [Paper - image-models.github.io/)]   
 - [Paper - adapters/)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - Adapter/I2V-Adapter-repo)]   
 - [Paper - cd/unet-finetune)]   
 - [Paper - blue)  
 - [Paper - VLL/CAST)]   
 - [Paper - blue)  
 - [Paper - adapter.github.io/)]   
 - [Paper
 - [Paper
 - [Paper - Tuning)]
 - [Paper - adapter)]   
 - [Paper - Adapter)]   
 
 - 
                    
Prompt Tuning
- [Paper - blue)  
 - [Paper - IDPT)]   
 - [Paper - anything)]  
 - [paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)   
 - [Paper - zhu/ViPT)]   
 - [Paper - IDPT)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - Visual-Prompt)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - anything)]  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - VLAA/EVP)]   
 - [Paper - Group/ILM-VP)]   
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - prompt-learning)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - duan/DG-SCT)]   
 - [Paper - blue)  
 - [Paper - blue)  
 
 - 
                    
Prefix Tuning
- [Paper - blue) 
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - blue)  
 - [Paper - blue)
 - [Paper - blue) 
 
 - 
                    
Side Tuning
- [Paper - blue) 
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - Side-Tuning)]   
 - [Paper - Adapter)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - LST)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 
 - 
                    
Specification Tuning
- [Paper - blue) 
 - [Paper - Better)]
 - [Paper - blue) 
 - [Paper - blue) 
 - [Paper - pytorch)]   
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - blue)  
 
 - 
                    
Unified Tuning
- [Paper - blue)  
 - [Paper - blue)  
 - [Paper - parameter-efficient-tuning)] 
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - PETL)]   
 
 - 
                    
Reparameter Tuning
- [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - ai-lab/PEViT)]   
 - [Paper - Group/DnA)]   
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - blue)  
 - [Paper - Group/DnA)]   
 - [Paper - blue)  
 - [Paper - blue) 
 - [Paper - Group/DnA)]   
 - [Paper - blue)  
 - [Paper - Chen/EFFT-EFfective-Factor-Tuning)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - blue)  
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - blue) 
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - Group/DnA)]   
 - [Paper - blue)  
 - [Paper - zju/PointLoRA)]
 
 
 - 
                    
 - 
            
<p align=center>๐๐๐ฎ๐ผ๐ธ๐ถ๐ฎ ๐๐ช๐ป๐ช๐ถ๐ฎ๐ฝ๐ฎ๐ป-๐๐ฏ๐ฏ๐ฒ๐ฌ๐ฒ๐ฎ๐ท๐ฝ ๐ฃ๐ป๐ช๐ท๐ผ๐ฏ๐ฎ๐ป ๐๐ฎ๐ช๐ป๐ท๐ฒ๐ท๐ฐ</p>
 - 
            
๐ฌ <span id="head1"> *Keywords* </span>
 - 
            
๐ฏ <span id="head1"> *Datasets of Visual PETL* </span>
- 
                    
Unified Tuning
- A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark - 1k consists of 19 diverse visual classification tasks.|
 - The kinetics human action video dataset. - OA3Y50OWtPJ/view?usp=sharing) | Video Action Recognition|
 - The โsomething somethingโ Video Database for Learning and Evaluating Visual Common Sense - datasets/something-something) | Video Action Recognition|
 - HMDB:ALargeVideo Database for Human Motion Recognition - lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/) | Video Action Recognition|
 - UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
 - Microsoft COCO: Common Objects in Context
 - Semantic Understanding of Scenes through the ADE20K Dataset
 - The Pascal Visual Object Classes Challenge: A Retrospective
 - RESOUND: Towards Action Recognition without Representation Bias
 - Visual prompt tuning - Grained Visual Classification tasks. |
 
 
 - 
                    
 
            Categories
          
          
              
                ๐ <span id="head1"> *Papers* </span>
                152
              
              
                ๐ฏ <span id="head1"> *Datasets of Visual PETL* </span>
                10
              
              
                <p align=center>๐๐๐ฎ๐ผ๐ธ๐ถ๐ฎ ๐๐ช๐ป๐ช๐ถ๐ฎ๐ฝ๐ฎ๐ป-๐๐ฏ๐ฏ๐ฒ๐ฌ๐ฒ๐ฎ๐ท๐ฝ ๐ฃ๐ป๐ช๐ท๐ผ๐ฏ๐ฎ๐ป ๐๐ฎ๐ช๐ป๐ท๐ฒ๐ท๐ฐ</p>
                5
              
              
                ๐ฌ <span id="head1"> *Keywords* </span>
                3