Awesome-Parameter-Efficient-Transfer-Learning
Collection of awesome parameter-efficient fine-tuning resources.
https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning
Last synced: about 17 hours ago
JSON representation
-
๐ <span id="head1"> *Papers* </span>
-
Adapter Tuning
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)   
- [Paper - ViT)]    
- [Paper - Adapter)]   
- [Paper - image-models.github.io/)]   
- [Paper - adapters/)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue) 
- [Paper - blue)
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - adapter)]   
- [Paper - Adapter)]   
- [Paper - Adapter/I2V-Adapter-repo)]   
- [Paper - blue)  
- [Paper - cd/unet-finetune)]   
- [Paper - VLL/CAST)]   
- [Paper - blue)  
- [Paper - adapter.github.io/)]   
- [Paper
- [Paper
- [Paper - Tuning)]
-
Prompt Tuning
- [Paper - blue)  
- [Paper - IDPT)]   
- [Paper - anything)]  
- [paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)   
- [Paper - IDPT)]   
- [Paper - zhu/ViPT)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - Visual-Prompt)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - VLAA/EVP)]   
- [Paper - Group/ILM-VP)]   
- [Paper - blue)  
- [Paper - blue) 
- [Paper - prompt-learning)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue) 
- [Paper - anything)]  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - duan/DG-SCT)]   
- [Paper - blue)  
- [Paper - blue)  
-
Prefix Tuning
- [Paper - blue) 
- [Paper - blue)  
- [Paper - blue)
- [Paper - blue) 
- [Paper - blue) 
- [Paper - blue)  
-
Side Tuning
- [Paper - blue) 
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue) 
- [Paper - Side-Tuning)]   
- [Paper - Adapter)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - LST)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
-
Specification Tuning
- [Paper - blue) 
- [Paper - Better)]
- [Paper - blue) 
- [Paper - blue) 
- [Paper - blue) 
- [Paper - pytorch)]   
- [Paper - blue)  
- [Paper - blue)  
-
Reparameter Tuning
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - ai-lab/PEViT)]   
- [Paper - Group/DnA)]   
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - blue)  
- [Paper - blue) 
- [Paper - blue)  
- [Paper - Chen/EFFT-EFfective-Factor-Tuning)]   
- [Paper - blue)  
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - blue) 
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
- [Paper - Group/DnA)]   
-
Unified Tuning
- [Paper - blue)  
- [Paper - blue)  
- [Paper - parameter-efficient-tuning)] 
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - blue)  
- [Paper - PETL)]   
-
-
๐ฏ <span id="head1"> *Datasets of Visual PETL* </span>
-
Unified Tuning
- Visual prompt tuning - Grained Visual Classification tasks. |
- A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark - 1k consists of 19 diverse visual classification tasks.|
- The kinetics human action video dataset. - OA3Y50OWtPJ/view?usp=sharing) | Video Action Recognition|
- The โsomething somethingโ Video Database for Learning and Evaluating Visual Common Sense - datasets/something-something) | Video Action Recognition|
- HMDB:ALargeVideo Database for Human Motion Recognition - lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/) | Video Action Recognition|
- RESOUND: Towards Action Recognition without Representation Bias
- UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild
- Microsoft COCO: Common Objects in Context
- Semantic Understanding of Scenes through the ADE20K Dataset
- The Pascal Visual Object Classes Challenge: A Retrospective
-
-
<p align=center>๐๐๐ฎ๐ผ๐ธ๐ถ๐ฎ ๐๐ช๐ป๐ช๐ถ๐ฎ๐ฝ๐ฎ๐ป-๐๐ฏ๐ฏ๐ฒ๐ฌ๐ฒ๐ฎ๐ท๐ฝ ๐ฃ๐ป๐ช๐ท๐ผ๐ฏ๐ฎ๐ป ๐๐ฎ๐ช๐ป๐ท๐ฒ๐ท๐ฐ</p>
-
๐ฌ <span id="head1"> *Keywords* </span>
Categories
๐ <span id="head1"> *Papers* </span>
150
๐ฏ <span id="head1"> *Datasets of Visual PETL* </span>
10
<p align=center>๐๐๐ฎ๐ผ๐ธ๐ถ๐ฎ ๐๐ช๐ป๐ช๐ถ๐ฎ๐ฝ๐ฎ๐ป-๐๐ฏ๐ฏ๐ฒ๐ฌ๐ฒ๐ฎ๐ท๐ฝ ๐ฃ๐ป๐ช๐ท๐ผ๐ฏ๐ฎ๐ป ๐๐ฎ๐ช๐ป๐ท๐ฒ๐ท๐ฐ</p>
6
๐ฌ <span id="head1"> *Keywords* </span>
3