An open API service indexing awesome lists of open source software.

Awesome-Diffusion-Quantization

A list of papers, docs, codes about diffusion quantization.This repo collects various quantization methods for the Diffusion Models. Welcome to PR the works (papers, repositories) missed by the repo.
https://github.com/wlfeng0509/Awesome-Diffusion-Quantization

Last synced: about 13 hours ago
JSON representation

  • Papers

    • 2024

      • [ICLR - Aware Fine-Tuning of Low-Bit Diffusion Models [[code]](https://github.com/ThisisBillhe/EfficientDM)![](https://img.shields.io/github/stars/ThisisBillhe/EfficientDM)
      • [CVPR - training Quantization for Diffusion Models [[code]](https://github.com/ChangyuanWang17/APQ-DM)![](https://img.shields.io/github/stars/ChangyuanWang17/APQ-DM)
      • [ECCV - Efficient Fine-Tuning for Quantized Diffusion Model [[code]](https://github.com/ugonfor/TuneQDM)![](https://img.shields.io/github/stars/ugonfor/TuneQDM)
      • [NeurIPS - Resolution [[code]](https://github.com/zhengchen1999/BI-DiffSR)![](https://img.shields.io/github/stars/zhengchen1999/BI-DiffSR)
      • [Arxiv - Training Vector Quantization for Diffusion Transformers
      • [CVPR - DM: Temporal Feature Maintenance Quantization for Diffusion Models [[code]](https://github.com/ModelTC/TFMQ-DM)![](https://img.shields.io/github/stars/ModelTC/TFMQ-DM)
      • [ECCV - Efficient Few-Step Text-to-Image Diffusion Models with Metric-Decoupled Mixed Precision Quantization [[code]](https://github.com/thu-nics/MixDQ)![](https://img.shields.io/github/stars/thu-nics/MixDQ)
      • [ECCV - Aware Correction for Quantized Diffusion Models
      • [ECCV - training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [[code]](https://github.com/tsa18/PCR)![](https://img.shields.io/github/stars/tsa18/PCR)
      • [NeurIPS - training Quantization for Diffusion Transformers [[code]](https://github.com/adreamwu/PTQ4DiT)![](https://img.shields.io/github/stars/adreamwu/PTQ4DiT)
      • [NeurIPS - research/BitsFusion)![](https://img.shields.io/github/stars/snap-research/BitsFusion)
      • [NeurIPS - Lance/TerDiT)![](https://img.shields.io/github/stars/Lucky-Lance/TerDiT)
      • [NeurIPS - Zheng/BiDM)![](https://img.shields.io/github/stars/Xingyu-Zheng/BiDM)
      • [NeurIPS
      • [AAAI - DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [[code]](https://github.com/cantbebetter2/MPQ-DM)![](https://img.shields.io/github/stars/cantbebetter2/MPQ-DM)
      • [AAAI - Research/Qua2SeDiMo)![](https://img.shields.io/github/stars/Ascend-Research/Qua2SeDiMo)
      • [AAAI - DM: Timestep-Channel Adaptive Quantization for Diffusion Models
      • [AAAI - Timestep Error Correction
      • [Arxiv - DiT: Efficient Diffusion Transformer with FP4 Hybrid Quantization
      • [Arxiv - DiT: Time-aware Quantization for Diffusion Transformers [[code]](https://github.com/yhwangs/TQ-DiT)![](https://img.shields.io/github/stars/yhwangs/TQ-DiT)
    • 2023

      • [NeurIPS
      • [ICCV - Diffusion: Quantizing Diffusion Models [[code]](https://github.com/Xiuyu-Li/q-diffusion)![](https://img.shields.io/github/stars/Xiuyu-Li/q-diffusion)
      • [CVPR - training Quantization on Diffusion Models [[code]](https://github.com/42Shawn/PTQ4DM)![](https://img.shields.io/github/stars/42Shawn/PTQ4DM)
      • [NeurIPS - Training Quantization for Diffusion Models [[code]](https://github.com/ziplab/PTQD)![](https://img.shields.io/github/stars/ziplab/PTQD)
      • [NeurIPS - DM: An Efficient Low-bit Quantized Diffusion Model
    • 2025

      • [ICLR - Zheng/BinaryDM)![](https://img.shields.io/github/stars/Xingyu-Zheng/BinaryDM)
      • [ICLR - Bit Attention for Plug-and-play Inference Acceleration [[code]](https://github.com/thu-ml/SageAttention)![](https://img.shields.io/github/stars/thu-ml/SageAttention)
      • [ICML - thread INT4 Quantization [[code]](https://github.com/thu-ml/SageAttention)![](https://img.shields.io/github/stars/thu-ml/SageAttention)
      • [CVPR - Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [[code]](https://github.com/libozhu03/PassionSR)![](https://img.shields.io/github/stars/libozhu03/PassionSR)
      • [Arxiv - Module and Timestep-Retraining in One-Step Diffusion based Image Super-Resolution [[code]](https://github.com/libozhu03/QArtSR) ![](https://img.shields.io/github/stars/libozhu03/QArtSR)
      • [ICLR - Rank Components for 4-Bit Diffusion Models [[code]](https://github.com/mit-han-lab/nunchaku)![](https://img.shields.io/github/stars/mit-han-lab/nunchaku)
      • [ICLR - Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation [[code]](https://github.com/thu-nics/ViDiT-Q)![](https://img.shields.io/github/stars/thu-nics/ViDiT-Q)
      • [WACV
      • [CVPR - DiT: Accurate Post-Training Quantization for Diffusion Transformers [[code]](https://github.com/Juanerx/Q-DiT)![](https://img.shields.io/github/stars/Juanerx/Q-DiT)
      • [ICCV - Guided Quantization with Hierarchical Latent and Layer Caching for Video Generation [[code]](https://github.com/JunyiWuCode/QuantCache) ![](https://img.shields.io/github/stars/JunyiWuCode/QuantCache)
      • [Arxiv - Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models
      • [ICCV - Guided Diffusion Models
      • [CVPR
      • [ICML - VDiT: Towards Accurate Quantization and Distillation of Video-Generation Diffusion Transformers [[code]](https://github.com/cantbebetter2/Q-VDiT)![](https://img.shields.io/github/stars/cantbebetter2/Q-VDiT)
      • [ICCV - bit Diffusion Model Quantization via Efficient Selective Finetuning [[code]](https://github.com/hatchetProject/QuEST)![](https://img.shields.io/github/stars/hatchetProject/QuEST)
      • [ICCV - Training Quantization[[code]](https://github.com/LeeDongYeun/dmq)![](https://img.shields.io/github/stars/LeeDongYeun/dmq)
      • [ISCAS - QTA: Quantized Training Acceleration for Efficient LoRA Fine-Tuning of Diffusion Model
      • [Arxiv
      • [Arxiv - DQ: Time-Rotation Diffusion Quantization
      • [Arxiv - Training Quantization for Diffusion Transformer via Hierarchical Timestep Grouping
      • [Arxiv - DiT: Efficient Time-Aware Quantization for Diffusion Transformers
      • [Arxiv
      • [Arxiv - Aware Perspective
      • [Arxiv
      • [Arxiv - Bit FP Quantization for Diffusion Models: Mixup-Sign Quantization and Timestep-Aware Fine-Tuning
      • [Arxiv - Quant: Data-free Video Diffusion Transformers Quantization [[code]](https://github.com/lhxcs/DVD-Quant) ![](https://img.shields.io/github/stars/lhxcs/DVD-Quant)
      • [Arxiv - DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation