Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

awesome-image-denoising-state-of-the-art

awesome image and video denoising, state of the art networks
https://github.com/z-bingo/awesome-image-denoising-state-of-the-art

Last synced: about 4 hours ago
JSON representation

  • Awesome Image or Video Denoising Algorithms

  • Denoising Algorithms

    • [Web - ECCV2018) [[PDF]](http://openaccess.thecvf.com/content_ECCV_2018/papers/XU_JUN_A_Trilateral_Weighted_ECCV_2018_paper.pdf)
    • [Web - foundation.org/openaccess/content_cvpr_2013/papers/Zuo_Texture_Enhanced_Image_2013_CVPR_paper.pdf)
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web - Net) [[PDF]](https://arxiv.org/abs/1802.10252)
    • [Web
    • [Web - skoltech/UDNet) [[PDF]](https://arxiv.org/pdf/1711.07807.pdf)
    • [Web
    • [Web
    • [Web
    • [Web
    • [Official Code - Image-Denoising) [[PDF]](https://arxiv.org/abs/2101.02824.pdf)
    • [Web
    • [Web - Liu/NLRN) [[PDF]](https://arxiv.org/pdf/1806.02919.pdf)
    • [Web
    • [Web - tassano/dvdnet) [[PDF]](https://arxiv.org/pdf/1906.11890.pdf)
    • [Web - tassano/fastdvdnet) [[An Unofficial PyTorch Code]](https://github.com/z-bingo/FastDVDNet) [[PDF]](https://arxiv.org/pdf/1907.01361.pdf)
    • [Web
    • [Web
    • [Code
    • [Code
    • [Web - image-denoising-based-on-non-local-means-filter-and-its-method-noise-thresholding?focused=3806802&tab=function) [[PDF]](https://link.springer.com/article/10.1007/s11760-012-0389-y)
    • [Web - BM3D/BM3D.zip) [[PDF]](http://www.cs.tut.fi/~foi/GCF-BM3D/SPIE08_deblurring.pdf)
    • [Web - image-denoising/pid.zip) [[PDF]](http://www.cgg.unibe.ch/publications/2014/progressive-image-denoising/at_download/file)
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web - fields) [[PDF]](http://research.uweschmidt.org/pubs/cvpr14schmidt.pdf)
    • [Web - Codes.zip?dl=0) [[PDF]](https://arxiv.org/pdf/1508.02848.pdf)
    • [Web - denoising/) [[PDF]](https://arxiv.org/pdf/1603.09056.pdf)
    • [Web - image-prior) [[PDF]](https://sites.skoltech.ru/app/data/uploads/sites/25/2018/04/deep_image_prior.pdf)
    • [Web
    • [PDF
    • [PDF
    • [PDF - noise-level-estimation-from-a-single-image) [[Slides]](https://wwwpub.zih.tu-dresden.de/~hh3/Hauptsem/SS16/noise.pdf)
    • [Code
    • [PDF
    • [Web - skoltech/UDNet) [[PDF]](http://www.skoltech.ru/app/data/uploads/sites/19/2018/03/UDNet_CVPR2018.pdf)
  • Benchmark and Dataset

    • [Web - Real-World-Noisy-Images-Dataset) [[PDF]](https://arxiv.org/pdf/1804.02603.pdf)
    • [Web
    • [Web
    • [Web - darmstadt.de/downloads/) [[PDF]](https://download.visinf.tu-darmstadt.de/papers/2017-cvpr-ploetz-benchmarking_denoising_algorithms-preprint.pdf)
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
    • [Web
  • Others

    • [Wiki - quality) [[PyTorch Code]](https://github.com/z-bingo/FastDVDNet/blob/master/utils/data_utils.py#L13)
    • [Wiki - quality/blob/master/ssim.py) [[PyTorch Code]](https://github.com/z-bingo/FastDVDNet/blob/master/utils/data_utils.py#L26)
    • [Web - quality/blob/master/niqe.py)