Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

https://github.com/tensorflow/recommenders

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.
https://github.com/tensorflow/recommenders

recommender recommender-system tensorflow tensorflow-recommenders

Last synced: 2 months ago
JSON representation

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

Lists

README

        

# TensorFlow Recommenders

![TensorFlow Recommenders logo](assets/full_logo.png)

![TensorFlow Recommenders build badge](https://github.com/tensorflow/recommenders/actions/workflows/test.yaml/badge.svg)
[![PyPI badge](https://img.shields.io/pypi/v/tensorflow-recommenders.svg)](https://pypi.python.org/pypi/tensorflow-recommenders/)

TensorFlow Recommenders is a library for building recommender system models
using [TensorFlow](https://www.tensorflow.org).

It helps with the full workflow of building a recommender system: data
preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving
you the flexibility to build complex models.

## Installation

Make sure you have TensorFlow 2.x installed, and install from `pip`:

```shell
pip install tensorflow-recommenders
```

## Documentation

Have a look at our
[tutorials](https://tensorflow.org/recommenders/examples/quickstart) and
[API reference](https://www.tensorflow.org/recommenders/api_docs/python/tfrs/).

## Quick start

Building a factorization model for the Movielens 100K dataset is very simple
([Colab](https://tensorflow.org/recommenders/examples/quickstart)):

```python
from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"]),
"user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

def __init__(self):
super().__init__()

# Set up user representation.
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up movie representation.
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up a retrieval task and evaluation metrics over the
# entire dataset of candidates.
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.item_model)
)
)

def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])

return self.task(user_embeddings, movie_embeddings)

model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)
```