Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

https://github.com/stanford-crfm/levanter

Legible, Scalable, Reproducible Foundation Models with Named Tensors and Jax
https://github.com/stanford-crfm/levanter

Last synced: 3 months ago
JSON representation

Legible, Scalable, Reproducible Foundation Models with Named Tensors and Jax

Lists

README

        

# Levanter


Build Status


Documentation Status


License


PyPI

> *You could not prevent a thunderstorm, but you could use the electricity; you could not direct the wind, but you could trim your sail so as to propel your vessel as you pleased, no matter which way the wind blew.*

> — Cora L. V. Hatch

Levanter is a framework for training large language models (LLMs) and other foundation models that strives for legibility, scalability, and reproducibility:

1. **Legible**: Levanter uses our named tensor library [Haliax](https://github.com/stanford-crfm/haliax) to write easy-to-follow, composable deep learning code, while still being high performance.
2. **Scalable**: Levanter scales to large models, and to be able to train on a variety of hardware, including GPUs and TPUs.
3. **Reproducible**: Levanter is bitwise deterministic, meaning that the same configuration will always produce the same results, even in the face of preemption and resumption.

We built Levanter with [JAX](https:://github.com/google/jax), [Equinox](https://github.com/patrick-kidger/equinox), and [Haliax](https://github.com/stanford-crfm/haliax).

## Documentation

Levanter's documentation is available at [levanter.readthedocs.io](https://levanter.readthedocs.io/en/latest/).
Haliax's documentation is available at [haliax.readthedocs.io](https://haliax.readthedocs.io/en/latest/).

## Features

* **Distributed Training**: We support distributed training on TPUs (and soon, GPUs), including FSDP and tensor parallelism.
* **Compatibility**: Levanter supports importing and exporting models to/from the Hugging Face ecosystem, including tokenizers, datasets, and models via [SafeTensors](https://github.com/huggingface/safetensors).
* **Performance**: Levanter's performance rivals commercially-backed frameworks like MosaicML's Composer or Google's MaxText.
* **Cached On-Demand Data Preprocessing**: We preprocess corpora online, but we cache the results of preprocessing so
that resumes are much faster and so that subsequent runs are even faster. As soon as the first part of the cache is complete, Levanter will start training.
* **Optimization**: Levanter supports the new [Sophia](https://arxiv.org/abs/2305.14342) optimizer, which can be 2x as fast as Adam. We also support ses [Optax](https://github.com/deepmind/optax) for optimization with AdamW, etc.
* **Logging**: Levanter supports a few different logging backends, including [WandB](https://wandb.ai/site) and [TensorBoard](https://www.tensorflow.org/tensorboard). (Adding a new logging backend is easy!) Levanter even exposes the ability
to log inside of JAX `jit`-ted functions.
* **Reproducibility**: On TPU, Levanter is bitwise deterministic, meaning that the same configuration will always produce the same results, even in the face of preemption and resumption.
* **Distributed Checkpointing**: Distributed checkpointing is supported via Google's [TensorStore](https://google.github.io/tensorstore/) library. Training can even be resumed on a different number of hosts, though this breaks reproducibility for now.

Levanter was created by [Stanford's Center for Research on Foundation Models (CRFM)](https://crfm.stanford.edu/)'s research engineering team.
You can also find us in the #levanter channel on the unofficial [Jax LLM Discord](https://discord.gg/CKazXcbbBm)

## Getting Started

Here is a small set of examples to get you started. For more information about the various configuration options,
please see the [Getting Started](./docs/Getting-Started-Training.md) guide or the [In-Depth Configuration Guide](docs/Configuration-Guide.md).
You can also use `--help` or poke around other configs to see all the options available to you.

### Installing Levanter

After [installing JAX](https://github.com/google/jax/blob/main/README.md#installation) with the appropriate configuration
for your platform, you can install Levanter with:

```bash
pip install levanter
```

or using the latest version from GitHub:

```bash
git clone https://github.com/stanford-crfm/levanter.git
cd levanter
pip install -e .
wandb login # optional, we use wandb for logging
```

If you're developing Haliax and Levanter at the same time, you can do something like.
```bash
git clone https://github.com/stanford-crfm/levanter.git
cd levanter
pip install -e .
cd ..
git clone https://github.com/stanford-crfm/haliax.git
cd haliax
pip install -e .
cd ../levanter
```

Please refer to the [Installation Guide](docs/Installation.md) for more information on how to install Levanter.

If you're using a TPU, more complete documentation for setting that up is available [here](docs/Getting-Started-TPU-VM.md). GPU support is still in-progress; documentation is available [here](docs/Getting-Started-GPU.md).

### Training a GPT2-nano

As a kind of hello world, here's how you can train a GPT-2 "nano"-sized model on a small dataset.

```bash
python -m levanter.main.train_lm --config_path config/gpt2_nano.yaml

# alternatively, if you didn't use -e and are in a different directory
python -m levanter.main.train_lm --config_path gpt2_nano
```

This will train a GPT2-nano model on the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) dataset.

### Training a GPT2-small on your own data

You can also change the dataset by changing the `dataset` field in the config file.
If your dataset is a [Hugging Face dataset](https://huggingface.co/docs/datasets/loading_datasets.html), you can use the `data.id` field to specify it:

```bash
python -m levanter.main.train_lm --config_path config/gpt2_small.yaml --data.id openwebtext

# optionally, you may specify a tokenizer and/or a cache directory, which may be local or on gcs
python -m levanter.main.train_lm --config_path config/gpt2_small.yaml --data.id openwebtext --data.tokenizer "EleutherAI/gpt-neox-20b" --data.cache_dir "gs://path/to/cache/dir"
```

If instead your data is a list of URLs, you can use the `data.train_urls` and `data.validation_urls` fields to specify them.
Data URLS can be local files, gcs files, or http(s) URLs, or anything that [fsspec](https://filesystem-spec.readthedocs.io/en/latest/) supports.
Levanter (really, fsspec) will automatically uncompress `.gz` and `.zstd` files, and probably other formats too.

```bash
python -m levanter.main.train_lm --config_path config/gpt2_small.yaml --data.train_urls ["https://path/to/train/data_*.jsonl.gz"] --data.validation_urls ["https://path/to/val/data_*.jsonl.gz"]
```

### Customizing a Config File

You can modify the config file to change the model, the dataset, the training parameters, and more. Here's
the `gpt2_small.yaml` file:

```yaml
data:
train_urls:
- "gs://pubmed-mosaic/openwebtext-sharded/openwebtext_train.{1..128}-of-128.jsonl.gz"
validation_urls:
- "gs://pubmed-mosaic/openwebtext-sharded/openwebtext_val.{1..8}-of-8.jsonl.gz"
cache_dir: "gs://pubmed-mosaic/tokenized/openwebtext/"
model:
gpt2:
hidden_dim: 768
num_heads: 12
num_layers: 12
seq_len: 1024
gradient_checkpointing: true
scale_attn_by_inverse_layer_idx: true
trainer:
tracker:
type: wandb
project: "levanter"
tags: [ "openwebtext", "gpt2"]

mp: p=f32,c=bfloat16
model_axis_size: 1
per_device_parallelism: 4

train_batch_size: 512
optimizer:
learning_rate: 6E-4
weight_decay: 0.1
min_lr_ratio: 0.1
```

### Other Architectures

Currently, we support the following architectures:
* GPT-2
* [LLama 1 or 2](https://ai.meta.com/llama/)
* [Backpacks](http://backpackmodels.science/)
* MosaicML's [MPT](https://www.mosaicml.com/blog/mpt-7b)

We plan to add more in the future.

#### Continued Pretraining with Llama 1 or Llama 2

Here's an example of how to continue pretraining a Llama 1 or Llama 2 model on the OpenWebText dataset:

```bash
python -m levanter.main.train_lm --config_path config/llama2_7b_continued.yaml
```

## Distributed and Cloud Training

### Training on a TPU Cloud VM

Please see the [TPU Getting Started](docs/Getting-Started-TPU-VM.md) guide for more information on how to set up a TPU Cloud VM and run Levanter there.

### Training with CUDA

Please see the [CUDA Getting Started](docs/Getting-Started-GPU.md) guide for more information on how to set up a CUDA environment and run Levanter there.

## Contributing

We welcome contributions! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for more information.

## License

Levanter is licensed under the Apache License, Version 2.0. See [LICENSE](LICENSE) for the full license text.