Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

https://github.com/hfawaz/dl-4-tsc

Deep Learning for Time Series Classification
https://github.com/hfawaz/dl-4-tsc

convolutional-neural-networks deep-learning deep-neural-networks empirical-research research-paper review time-series-classification

Last synced: about 1 month ago
JSON representation

Deep Learning for Time Series Classification

Lists

README

        

# Deep Learning for Time Series Classification
This is the companion repository for [our paper](https://link.springer.com/article/10.1007%2Fs10618-019-00619-1) titled "Deep learning for time series classification: a review" published in [Data Mining and Knowledge Discovery](https://link.springer.com/journal/10618), also available on [ArXiv](https://arxiv.org/pdf/1809.04356.pdf).

![architecture resnet](https://github.com/hfawaz/dl-4-tsc/blob/master/png/resnet-archi.png)

## Docker
Assuming you have [docker](https://hub.docker.com) installed.
You can now use the docker image provided [here](https://hub.docker.com/repository/docker/hassanfawaz/dl-4-tsc/general).

Access the docker container via:
```bash
docker run --name somename --gpus all -idt hassanfawaz/dl-4-tsc:0.3
docker exec -it somename bash
```

To run you will need to manually download the UCR archive into `/dl-4-tsc/archives/`:

```bash
cd /dl-4-tsc/archives
wget https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCRArchive_2018.zip
unzip -P $password UCRArchive_2018.zip
```

The password can be found [here](https://www.cs.ucr.edu/~eamonn/time_series_data_2018/).

Now that you have the data and the code you can just run the code.

```bash
cd /dl-4-tsc
python -m main UCRArchive_2018 Coffee fcn _itr_0
```

You can also try and install with pip on your env.

## Data
The data used in this project comes from two sources:
* The [UCR/UEA archive](http://timeseriesclassification.com/TSC.zip), which contains the 85 univariate time series datasets.
* The [MTS archive](http://www.mustafabaydogan.com/files/viewcategory/20-data-sets.html), which contains the 13 multivariate time series datasets.

## Code
The code is divided as follows:
* The [main.py](https://github.com/hfawaz/dl-4-tsc/blob/master/main.py) python file contains the necessary code to run an experiement.
* The [utils](https://github.com/hfawaz/dl-4-tsc/tree/master/utils) folder contains the necessary functions to read the datasets and visualize the plots.
* The [classifiers](https://github.com/hfawaz/dl-4-tsc/tree/master/classifiers) folder contains nine python files one for each deep neural network tested in our paper.

To run a model on one dataset you should issue the following command:
```
python3 main.py TSC Coffee fcn _itr_8
```
which means we are launching the [fcn](https://github.com/hfawaz/dl-4-tsc/blob/master/classifiers/fcn.py) model on the univariate UCR archive for the Coffee dataset (see [constants.py](https://github.com/hfawaz/dl-4-tsc/blob/master/utils/constants.py) for a list of possible options).

## Prerequisites
All python packages needed are listed in [pip-requirements.txt](https://github.com/hfawaz/dl-4-tsc/blob/master/utils/pip-requirements.txt) file and can be installed simply using the pip command.
The code now uses Tensorflow 2.0.
The results in the paper were generated using the Tensorflow 1.14 implementation which can be found [here](https://github.com/hfawaz/dl-4-tsc/commit/7ab94a02aedf3a9688e248603bd43c5d405f039b).
Using Tensorflow 2.0 should give the same results.
Now [InceptionTime](https://github.com/hfawaz/InceptionTime) is included in the mix, feel free to send a pull request to add another classifier.

* [numpy](http://www.numpy.org/)
* [pandas](https://pandas.pydata.org/)
* [sklearn](http://scikit-learn.org/stable/)
* [scipy](https://www.scipy.org/)
* [matplotlib](https://matplotlib.org/)
* [tensorflow-gpu](https://www.tensorflow.org/)
* [keras](https://keras.io/)
* [h5py](http://docs.h5py.org/en/latest/build.html)
* [keras_contrib](https://www.github.com/keras-team/keras-contrib.git)

## Results
I added the [results](https://github.com/hfawaz/dl-4-tsc/blob/master/results/results-ucr-128.csv) on the 128 datasets from the [UCR archive 2018](https://www.cs.ucr.edu/~eamonn/time_series_data_2018/).
Our [results](https://github.com/hfawaz/dl-4-tsc/tree/master/results) in the paper showed that a deep residual network architecture performs best for the time series classification task.

The following table contains the averaged accuracy over 10 runs of each implemented model on the UCR/UEA archive, with the standard deviation between parentheses.

| Datasets | MLP | FCN | ResNet | Encoder | MCNN | t-LeNet | MCDCNN | Time-CNN | TWIESN |
|--------------------------------|-----------|------------|------------|------------|------------|-----------|------------|-----------|------------|
| 50words | 68.4(7.1) | 62.7(6.1) | 74.0(1.5) | 72.3(1.0) | 22.0(24.3) | 12.5(0.0) | 58.9(5.3) | 62.1(1.0) | 49.6(2.6) |
| Adiac | 39.7(1.9) | 84.4(0.7) | 82.9(0.6) | 48.4(2.5) | 2.2(0.6) | 2.0(0.0) | 61.0(8.7) | 37.9(2.0) | 41.6(4.5) |
| ArrowHead | 77.8(1.2) | 84.3(1.5) | 84.5(1.2) | 80.4(2.9) | 33.9(4.7) | 30.3(0.0) | 68.5(6.7) | 72.3(2.6) | 65.9(9.4) |
| Beef | 72.0(2.8) | 69.7(4.0) | 75.3(4.2) | 64.3(5.0) | 20.0(0.0) | 20.0(0.0) | 56.3(7.8) | 76.3(1.1) | 53.7(14.9) |
| BeetleFly | 87.0(2.6) | 86.0(9.7) | 85.0(2.4) | 74.5(7.6) | 50.0(0.0) | 50.0(0.0) | 58.0(9.2) | 89.0(3.2) | 73.0(7.9) |
| BirdChicken | 77.5(3.5) | 95.5(3.7) | 88.5(5.3) | 66.5(5.8) | 50.0(0.0) | 50.0(0.0) | 58.0(10.3) | 60.5(9.0) | 74.0(15.6) |
| CBF | 87.2(0.7) | 99.4(0.1) | 99.5(0.3) | 94.7(1.2) | 33.2(0.1) | 33.2(0.1) | 82.0(20.5) | 95.7(1.0) | 89.0(4.9) |
| Car | 76.7(2.6) | 90.5(1.4) | 92.5(1.4) | 75.8(2.0) | 24.0(2.7) | 31.7(0.0) | 73.0(3.0) | 78.2(1.2) | 78.3(4.0) |
| ChlorineConcentration | 80.2(1.1) | 81.4(0.9) | 84.4(1.0) | 57.3(1.1) | 53.3(0.0) | 53.3(0.0) | 64.3(3.8) | 60.0(0.8) | 55.3(0.3) |
| CinC\_ECG\_torso | 84.0(1.0) | 82.4(1.2) | 82.6(2.4) | 91.1(2.7) | 38.1(28.0) | 25.0(0.1) | 73.6(15.2) | 74.5(4.9) | 30.0(2.9) |
| Coffee | 99.6(1.1) | 100.0(0.0) | 100.0(0.0) | 97.9(1.8) | 51.4(3.5) | 53.6(0.0) | 98.2(2.5) | 99.6(1.1) | 97.1(2.8) |
| Computers | 56.3(1.6) | 82.2(1.0) | 81.5(1.2) | 57.4(2.2) | 52.2(4.8) | 50.0(0.0) | 55.9(3.3) | 54.8(1.5) | 62.9(4.1) |
| Cricket\_X | 59.1(1.1) | 79.2(0.7) | 79.1(0.6) | 69.4(1.6) | 18.9(23.8) | 7.4(0.0) | 49.5(5.3) | 55.2(2.9) | 62.2(2.1) |
| Cricket\_Y | 60.0(0.8) | 78.7(1.2) | 80.3(0.8) | 67.5(1.0) | 18.4(22.0) | 8.5(0.0) | 49.7(4.3) | 57.0(2.4) | 65.6(1.3) |
| Cricket\_Z | 61.7(0.8) | 81.1(1.0) | 81.2(1.4) | 69.2(1.0) | 18.3(24.4) | 6.2(0.0) | 49.8(3.6) | 48.8(2.8) | 62.2(2.3) |
| DiatomSizeReduction | 91.0(1.4) | 31.3(3.6) | 30.1(0.2) | 91.3(1.8) | 30.1(0.7) | 30.1(0.0) | 70.3(28.9) | 95.4(0.7) | 88.0(6.6) |
| DistalPhalanxOutlineAgeGroup | 65.7(1.1) | 71.0(1.3) | 71.7(1.3) | 73.7(1.6) | 46.8(0.0) | 44.6(2.3) | 74.4(2.2) | 75.2(1.4) | 71.0(2.1) |
| DistalPhalanxOutlineCorrect | 72.6(1.3) | 76.0(1.5) | 77.1(1.0) | 74.1(1.4) | 58.3(0.0) | 58.3(0.0) | 75.3(1.8) | 75.9(2.0) | 71.3(1.0) |
| DistalPhalanxTW | 61.7(1.3) | 69.0(2.1) | 66.5(1.6) | 68.8(1.6) | 30.2(0.0) | 28.3(0.7) | 67.7(1.8) | 67.3(2.8) | 60.9(3.0) |
| ECG200 | 91.6(0.7) | 88.9(1.0) | 87.4(1.9) | 92.3(1.1) | 64.0(0.0) | 64.0(0.0) | 83.3(3.9) | 81.4(1.3) | 84.2(5.1) |
| ECG5000 | 92.9(0.1) | 94.0(0.1) | 93.4(0.2) | 94.0(0.2) | 61.8(10.9) | 58.4(0.0) | 93.7(0.6) | 92.8(0.2) | 91.9(0.2) |
| ECGFiveDays | 97.0(0.5) | 98.7(0.3) | 97.5(1.9) | 98.2(0.7) | 49.9(0.3) | 49.7(0.0) | 76.2(13.4) | 88.2(1.8) | 69.8(14.1) |
| Earthquakes | 71.7(1.3) | 72.7(1.7) | 71.2(2.0) | 74.8(0.7) | 74.8(0.0) | 74.8(0.0) | 74.9(0.2) | 70.0(1.9) | 74.8(0.0) |
| ElectricDevices | 59.2(1.1) | 70.2(1.2) | 72.9(0.9) | 67.4(1.1) | 33.6(19.8) | 24.2(0.0) | 64.4(1.2) | 68.1(1.0) | 60.7(0.7) |
| FISH | 84.8(0.8) | 95.8(0.6) | 97.9(0.8) | 86.6(0.9) | 13.4(1.3) | 12.6(0.0) | 75.8(3.9) | 84.9(0.5) | 87.5(3.4) |
| FaceAll | 79.3(1.1) | 94.5(0.9) | 83.9(2.0) | 79.3(0.8) | 17.0(19.5) | 8.0(0.0) | 71.7(2.3) | 76.8(1.1) | 65.7(2.5) |
| FaceFour | 84.0(1.4) | 92.8(0.9) | 95.5(0.0) | 81.5(2.6) | 26.8(5.7) | 29.5(0.0) | 71.2(13.5) | 90.6(1.1) | 85.5(6.2) |
| FacesUCR | 83.3(0.3) | 94.6(0.2) | 95.5(0.4) | 87.4(0.4) | 15.3(2.7) | 14.3(0.0) | 75.6(5.1) | 86.9(0.7) | 64.4(2.0) |
| FordA | 73.0(0.4) | 90.4(0.2) | 92.0(0.4) | 92.3(0.3) | 51.3(0.0) | 51.0(0.8) | 79.5(2.6) | 88.1(0.7) | 52.8(2.1) |
| FordB | 60.3(0.3) | 87.8(0.6) | 91.3(0.3) | 89.0(0.5) | 49.8(1.2) | 51.2(0.0) | 53.3(2.9) | 80.6(1.5) | 50.3(1.2) |
| Gun\_Point | 92.7(1.1) | 100.0(0.0) | 99.1(0.7) | 93.6(3.2) | 51.3(3.9) | 49.3(0.0) | 86.7(9.6) | 93.2(1.9) | 96.1(2.3) |
| Ham | 69.1(1.4) | 71.8(1.4) | 75.7(2.7) | 72.7(1.2) | 50.6(1.4) | 51.4(0.0) | 73.3(4.2) | 71.1(2.0) | 72.3(6.3) |
| HandOutlines | 91.8(0.5) | 80.6(7.9) | 91.1(1.4) | 89.9(2.3) | 64.1(0.0) | 64.1(0.0) | 90.9(0.6) | 88.8(1.2) | 66.0(0.7) |
| Haptics | 43.3(1.4) | 48.0(2.4) | 51.9(1.2) | 42.7(1.6) | 20.9(3.5) | 20.8(0.0) | 40.4(3.3) | 36.6(2.4) | 40.4(4.5) |
| Herring | 52.8(3.9) | 60.8(7.7) | 61.9(3.8) | 58.6(4.8) | 59.4(0.0) | 59.4(0.0) | 60.0(5.2) | 53.9(1.7) | 59.1(6.5) |
| InlineSkate | 33.7(1.0) | 33.9(0.8) | 37.3(0.9) | 29.2(0.9) | 16.7(1.6) | 16.5(1.1) | 21.5(2.2) | 28.7(1.2) | 33.0(6.8) |
| InsectWingbeatSound | 60.7(0.4) | 39.3(0.6) | 50.7(0.9) | 63.3(0.6) | 15.8(14.2) | 9.1(0.0) | 58.3(2.6) | 58.3(0.6) | 43.7(2.0) |
| ItalyPowerDemand | 95.4(0.2) | 96.1(0.3) | 96.3(0.4) | 96.5(0.5) | 50.0(0.2) | 49.9(0.0) | 95.5(1.9) | 95.5(0.4) | 88.0(2.2) |
| LargeKitchenAppliances | 47.3(0.6) | 90.2(0.4) | 90.0(0.5) | 61.9(2.6) | 41.0(16.5) | 33.3(0.0) | 43.4(2.8) | 66.6(5.0) | 77.9(1.8) |
| Lighting2 | 67.0(2.1) | 73.9(1.4) | 77.0(1.7) | 69.2(4.6) | 55.7(5.2) | 54.1(0.0) | 63.0(5.9) | 63.6(2.5) | 70.3(4.1) |
| Lighting7 | 63.0(1.7) | 82.7(2.3) | 84.5(2.0) | 62.5(2.3) | 31.0(11.3) | 26.0(0.0) | 53.4(5.9) | 65.1(3.3) | 66.4(6.6) |
| MALLAT | 91.8(0.6) | 96.7(0.9) | 97.2(0.3) | 87.6(2.0) | 13.5(3.7) | 12.3(0.1) | 90.1(5.7) | 92.0(0.7) | 59.6(9.8) |
| Meat | 89.7(1.7) | 85.3(6.9) | 96.8(2.5) | 74.2(11.0) | 33.3(0.0) | 33.3(0.0) | 70.5(8.8) | 90.2(1.8) | 96.8(2.0) |
| MedicalImages | 72.1(0.7) | 77.9(0.4) | 77.0(0.7) | 73.4(1.5) | 51.4(0.0) | 51.4(0.0) | 64.0(1.4) | 67.6(1.1) | 64.9(2.7) |
| MiddlePhalanxOutlineAgeGroup | 53.1(1.8) | 55.3(1.8) | 56.9(2.1) | 57.9(2.9) | 18.8(0.0) | 57.1(0.0) | 58.5(3.8) | 56.6(1.5) | 58.1(2.6) |
| MiddlePhalanxOutlineCorrect | 77.0(1.1) | 80.1(1.0) | 80.9(1.2) | 76.1(2.3) | 57.0(0.0) | 57.0(0.0) | 81.1(1.6) | 76.6(1.3) | 74.4(2.3) |
| MiddlePhalanxTW | 53.4(1.6) | 51.2(1.8) | 48.4(2.0) | 59.2(1.0) | 27.3(0.0) | 28.6(0.0) | 58.1(2.4) | 54.9(1.7) | 53.9(2.9) |
| MoteStrain | 85.8(0.9) | 93.7(0.5) | 92.8(0.5) | 84.0(1.0) | 50.8(4.0) | 53.9(0.0) | 76.5(14.4) | 88.2(0.9) | 78.5(4.2) |
| NonInvasiveFatalECG\_Thorax1 | 91.6(0.4) | 95.6(0.3) | 94.5(0.3) | 91.6(0.4) | 16.1(29.3) | 2.9(0.0) | 90.5(1.2) | 86.5(0.5) | 49.4(4.2) |
| NonInvasiveFatalECG\_Thorax2 | 91.7(0.3) | 95.3(0.3) | 94.6(0.3) | 93.2(0.9) | 16.0(29.2) | 2.9(0.0) | 91.5(1.5) | 89.8(0.3) | 52.5(3.2) |
| OSULeaf | 55.7(1.0) | 97.7(0.9) | 97.9(0.8) | 57.6(2.0) | 24.3(12.8) | 18.2(0.0) | 37.8(4.6) | 46.2(2.7) | 59.5(5.4) |
| OliveOil | 66.7(3.8) | 72.3(16.6) | 83.0(8.5) | 40.0(0.0) | 38.0(4.2) | 38.0(4.2) | 40.0(0.0) | 40.0(0.0) | 79.0(6.1) |
| PhalangesOutlinesCorrect | 73.5(2.1) | 82.0(0.5) | 83.9(1.2) | 76.7(1.4) | 61.3(0.0) | 61.3(0.0) | 80.3(1.1) | 77.1(4.7) | 65.4(0.4) |
| Phoneme | 9.6(0.3) | 32.5(0.5) | 33.4(0.7) | 17.2(0.8) | 13.2(4.0) | 11.3(0.0) | 13.0(1.0) | 9.5(0.3) | 12.8(1.4) |
| Plane | 97.8(0.5) | 100.0(0.0) | 100.0(0.0) | 97.6(0.8) | 13.0(4.5) | 13.4(1.4) | 96.5(3.2) | 96.5(1.4) | 100.0(0.0) |
| ProximalPhalanxOutlineAgeGroup | 85.6(0.5) | 83.1(1.3) | 85.3(0.8) | 84.4(1.3) | 48.8(0.0) | 48.8(0.0) | 83.8(0.8) | 82.8(1.6) | 84.4(0.5) |
| ProximalPhalanxOutlineCorrect | 73.3(1.8) | 90.3(0.7) | 92.1(0.6) | 79.1(1.8) | 68.4(0.0) | 68.4(0.0) | 87.3(1.8) | 81.2(2.6) | 82.1(0.9) |
| ProximalPhalanxTW | 76.7(0.7) | 76.7(0.9) | 78.0(1.7) | 81.2(1.1) | 35.1(0.0) | 34.6(1.0) | 79.7(1.3) | 78.3(1.2) | 78.1(0.7) |
| RefrigerationDevices | 37.9(2.1) | 50.8(1.0) | 52.5(2.5) | 48.8(1.9) | 33.3(0.0) | 33.3(0.0) | 36.9(3.8) | 43.9(1.0) | 50.1(1.5) |
| ScreenType | 40.3(1.0) | 62.5(1.6) | 62.2(1.4) | 38.3(2.2) | 34.1(2.4) | 33.3(0.0) | 42.7(1.8) | 38.9(0.9) | 43.1(4.7) |
| ShapeletSim | 50.3(3.1) | 72.4(5.6) | 77.9(15.0) | 53.0(4.7) | 50.0(0.0) | 50.0(0.0) | 50.7(4.1) | 50.0(1.3) | 61.7(10.2) |
| ShapesAll | 77.1(0.5) | 89.5(0.4) | 92.1(0.4) | 75.8(0.9) | 13.2(24.3) | 1.7(0.0) | 61.3(5.3) | 61.9(0.9) | 62.9(2.6) |
| SmallKitchenAppliances | 37.1(1.9) | 78.3(1.3) | 78.6(0.8) | 59.6(1.8) | 36.9(11.3) | 33.3(0.0) | 48.5(3.6) | 61.5(2.7) | 65.6(1.9) |
| SonyAIBORobotSurface | 67.2(1.3) | 96.0(0.7) | 95.8(1.3) | 74.3(1.9) | 44.3(4.5) | 42.9(0.0) | 65.3(10.9) | 68.7(2.3) | 63.8(9.9) |
| SonyAIBORobotSurfaceII | 83.4(0.7) | 97.9(0.5) | 97.8(0.5) | 83.9(1.0) | 59.4(7.4) | 61.7(0.0) | 77.4(6.7) | 84.1(1.7) | 69.7(4.3) |
| StarLightCurves | 94.9(0.2) | 96.1(0.9) | 97.2(0.3) | 95.7(0.5) | 65.4(16.1) | 57.7(0.0) | 93.9(1.2) | 92.6(0.2) | 85.0(0.2) |
| Strawberry | 96.1(0.5) | 97.2(0.3) | 98.1(0.4) | 94.6(0.9) | 64.3(0.0) | 64.3(0.0) | 95.6(0.6) | 95.9(0.3) | 89.5(2.0) |
| SwedishLeaf | 85.1(0.5) | 96.9(0.5) | 95.6(0.4) | 93.0(1.1) | 11.8(13.2) | 6.5(0.4) | 84.6(3.6) | 88.4(1.1) | 82.5(1.4) |
| Symbols | 83.2(1.0) | 95.5(1.0) | 90.6(2.3) | 82.1(1.9) | 22.6(16.9) | 17.4(0.0) | 75.6(11.5) | 81.0(0.7) | 75.0(8.8) |
| ToeSegmentation1 | 58.3(0.9) | 96.1(0.5) | 96.3(0.6) | 65.9(2.6) | 50.5(2.7) | 52.6(0.0) | 49.0(2.5) | 59.5(2.2) | 86.5(3.2) |
| ToeSegmentation2 | 74.5(1.9) | 88.0(3.3) | 90.6(1.7) | 79.5(2.8) | 63.2(30.9) | 81.5(0.0) | 44.3(15.2) | 73.8(2.8) | 84.2(4.6) |
| Trace | 80.7(0.7) | 100.0(0.0) | 100.0(0.0) | 96.0(1.8) | 35.4(27.7) | 24.0(0.0) | 86.3(5.4) | 95.0(2.5) | 95.9(1.9) |
| TwoLeadECG | 76.2(1.3) | 100.0(0.0) | 100.0(0.0) | 86.3(2.6) | 50.0(0.0) | 50.0(0.0) | 76.0(16.8) | 87.2(2.1) | 85.2(11.5) |
| Two\_Patterns | 94.6(0.3) | 87.1(0.3) | 100.0(0.0) | 100.0(0.0) | 40.3(31.1) | 25.9(0.0) | 97.8(0.6) | 99.2(0.3) | 87.1(1.1) |
| UWaveGestureLibraryAll | 95.5(0.2) | 81.7(0.3) | 86.0(0.4) | 95.4(0.1) | 28.9(34.7) | 12.8(0.2) | 92.9(1.1) | 91.8(0.4) | 55.6(2.5) |
| Wine | 56.5(7.1) | 58.7(8.3) | 74.4(8.5) | 50.0(0.0) | 50.0(0.0) | 50.0(0.0) | 50.0(0.0) | 51.7(5.1) | 75.9(9.1) |
| WordsSynonyms | 59.8(0.8) | 56.4(1.2) | 62.2(1.5) | 61.3(0.9) | 28.4(13.6) | 21.9(0.0) | 46.3(6.1) | 56.6(0.8) | 49.0(3.0) |
| Worms | 45.7(2.4) | 76.5(2.2) | 79.1(2.5) | 57.1(3.7) | 42.9(0.0) | 42.9(0.0) | 42.6(5.5) | 38.3(2.5) | 46.6(4.5) |
| WormsTwoClass | 60.1(1.5) | 72.6(2.7) | 74.7(3.3) | 63.9(4.4) | 57.1(0.0) | 55.7(4.5) | 57.0(1.9) | 53.8(2.6) | 57.0(2.3) |
| synthetic\_control | 97.6(0.4) | 98.5(0.3) | 99.8(0.2) | 99.6(0.3) | 29.8(27.8) | 16.7(0.0) | 98.3(1.2) | 99.0(0.4) | 87.4(1.6) |
| uWaveGestureLibrary\_X | 76.7(0.3) | 75.4(0.4) | 78.0(0.4) | 78.6(0.4) | 18.9(21.3) | 12.5(0.4) | 71.1(1.5) | 71.1(1.1) | 60.6(1.5) |
| uWaveGestureLibrary\_Y | 69.8(0.2) | 63.9(0.6) | 67.0(0.7) | 69.6(0.6) | 23.7(24.0) | 12.1(0.0) | 63.6(1.2) | 62.6(0.7) | 52.0(2.1) |
| uWaveGestureLibrary\_Z | 69.7(0.2) | 72.6(0.5) | 75.0(0.4) | 71.1(0.5) | 18.0(18.4) | 12.1(0.0) | 65.0(1.8) | 64.2(0.9) | 56.5(2.0) |
| wafer | 99.6(0.0) | 99.7(0.0) | 99.9(0.1) | 99.6(0.0) | 91.3(4.4) | 89.2(0.0) | 99.2(0.3) | 96.1(0.1) | 91.4(0.5) |
| yoga | 85.5(0.4) | 83.9(0.7) | 87.0(0.9) | 82.0(0.6) | 53.6(0.0) | 53.6(0.0) | 76.2(3.9) | 78.1(0.7) | 60.7(1.9) |
| **Average\_Rank** | 4.611765 | 2.682353 | 1.994118 | 3.682353 | 8.017647 | 8.417647 | 5.376471 | 4.970588 | 5.247059 |
| **Wins** | 4 | 18 | 41 | 10 | 0 | 0 | 3 | 4 | 1 |

The following table contains the averaged accuracy over 10 runs of each implemented model on the MTS archive, with the standard deviation between parentheses.

| Datasets | MLP | FCN | ResNet | Encoder | MCNN | t-LeNet | MCDCNN | Time-CNN | TWIESN |
|-----------------------|------------|------------|------------|------------|-----------|------------|------------|------------|------------|
| AUSLAN | 93.3(0.5) | 97.5(0.4) | 97.4(0.3) | 93.8(0.5) | 1.1(0.0) | 1.1(0.0) | 85.4(2.7) | 72.6(3.5) | 72.4(1.6) |
| ArabicDigits | 96.9(0.2) | 99.4(0.1) | 99.6(0.1) | 98.1(0.1) | 10.0(0.0) | 10.0(0.0) | 95.9(0.2) | 95.8(0.3) | 85.3(1.4) |
| CMUsubject16 | 60.0(16.9) | 100.0(0.0) | 99.7(1.1) | 98.3(2.4) | 53.1(4.4) | 51.0(5.3) | 51.4(5.0) | 97.6(1.7) | 89.3(6.8) |
| CharacterTrajectories | 96.9(0.2) | 99.0(0.1) | 99.0(0.2) | 97.1(0.2) | 5.4(0.8) | 6.7(0.0) | 93.8(1.7) | 96.0(0.8) | 92.0(1.3) |
| ECG | 74.8(16.2) | 87.2(1.2) | 86.7(1.3) | 87.2(0.8) | 67.0(0.0) | 67.0(0.0) | 50.0(17.9) | 84.1(1.7) | 73.7(2.3) |
| JapaneseVowels | 97.6(0.2) | 99.3(0.2) | 99.2(0.3) | 97.6(0.6) | 9.2(2.5) | 23.8(0.0) | 94.4(1.4) | 95.6(1.0) | 96.5(0.7) |
| KickvsPunch | 61.0(12.9) | 54.0(13.5) | 51.0(8.8) | 61.0(9.9) | 54.0(9.7) | 50.0(10.5) | 56.0(8.4) | 62.0(6.3) | 67.0(14.2) |
| Libras | 78.0(1.0) | 96.4(0.7) | 95.4(1.1) | 78.3(0.9) | 6.7(0.0) | 6.7(0.0) | 65.1(3.9) | 63.7(3.3) | 79.4(1.3) |
| NetFlow | 55.0(26.1) | 89.1(0.4) | 62.7(23.4) | 77.7(0.5) | 77.9(0.0) | 72.3(17.6) | 63.0(18.2) | 89.0(0.9) | 94.5(0.4) |
| UWave | 90.1(0.3) | 93.4(0.3) | 92.6(0.4) | 90.8(0.4) | 12.5(0.0) | 12.5(0.0) | 84.5(1.6) | 85.9(0.7) | 75.4(6.3) |
| Wafer | 89.4(0.0) | 98.2(0.5) | 98.9(0.4) | 98.6(0.2) | 89.4(0.0) | 89.4(0.0) | 65.8(38.1) | 94.8(2.1) | 94.9(0.6) |
| WalkvsRun | 70.0(15.8) | 100.0(0.0) | 100.0(0.0) | 100.0(0.0) | 75.0(0.0) | 60.0(24.2) | 45.0(25.8) | 100.0(0.0) | 94.4(9.1) |
| **Average\_Rank** | 5.208333 | 2.000000 | 2.875000 | 3.041667 | 7.583333 | 8.000000 | 6.833333 | 4.625000 | 4.833333 |
| **Wins** | 0 | 5 | 3 | 0 | 0 | 0 | 0 | 0 | 2 |

These results should give an insight of deep learning for TSC therefore encouraging researchers to consider the DNNs as robust classifiers for time series data.

If you would like to generate the critical difference diagrams using Wilcoxon Signed Rank test with Holm's alpha correction, check out [the cd-diagram repository](https://github.com/hfawaz/cd-diagram).

## Reference

If you re-use this work, please cite:

```
@article{IsmailFawaz2018deep,
Title = {Deep learning for time series classification: a review},
Author = {Ismail Fawaz, Hassan and Forestier, Germain and Weber, Jonathan and Idoumghar, Lhassane and Muller, Pierre-Alain},
journal = {Data Mining and Knowledge Discovery},
Year = {2019},
volume = {33},
number = {4},
pages = {917--963},
}
```
## Acknowledgement

We would like to thank the providers of the [UCR/UEA archive](http://timeseriesclassification.com/TSC.zip).
We would also like to thank NVIDIA Corporation for the Quadro P6000 grant and the Mésocentre of Strasbourg for providing access to the cluster.
We would also like to thank [François Petitjean](https://www.francois-petitjean.com/) and [Charlotte Pelletier](https://sites.google.com/site/charpelletier/) for the fruitful discussions, their feedback and comments while writing this paper.