Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://arviz-devs.github.io/arviz/
Exploratory analysis of Bayesian models with Python
https://arviz-devs.github.io/arviz/
bayesian closember python
Last synced: about 2 months ago
JSON representation
Exploratory analysis of Bayesian models with Python
- Host: GitHub
- URL: https://arviz-devs.github.io/arviz/
- Owner: arviz-devs
- License: apache-2.0
- Created: 2015-07-29T11:51:10.000Z (over 9 years ago)
- Default Branch: main
- Last Pushed: 2024-10-08T21:42:17.000Z (3 months ago)
- Last Synced: 2024-10-30T04:54:33.883Z (2 months ago)
- Topics: bayesian, closember, python
- Language: Python
- Homepage: https://python.arviz.org
- Size: 117 MB
- Stars: 1,600
- Watchers: 48
- Forks: 401
- Open Issues: 182
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
- Governance: GOVERNANCE.md
Awesome Lists containing this project
- awesome-python-tools - ArviZ
- Time-Series - ArviZ: Exploratory analysis of Bayesian models
README
[![PyPI version](https://badge.fury.io/py/arviz.svg)](https://badge.fury.io/py/arviz)
[![Azure Build Status](https://dev.azure.com/ArviZ/ArviZ/_apis/build/status/arviz-devs.arviz?branchName=main)](https://dev.azure.com/ArviZ/ArviZ/_build/latest?definitionId=1&branchName=main)
[![codecov](https://codecov.io/gh/arviz-devs/arviz/branch/main/graph/badge.svg)](https://codecov.io/gh/arviz-devs/arviz)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/ambv/black)
[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/arviz-devs/community)
[![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2540945.svg)](https://doi.org/10.5281/zenodo.2540945)
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)ArviZ (pronounced "AR-_vees_") is a Python package for exploratory analysis of Bayesian models. It includes functions for posterior analysis, data storage, model checking, comparison and diagnostics.
### ArviZ in other languages
ArviZ also has a Julia wrapper available [ArviZ.jl](https://julia.arviz.org/).## Documentation
The ArviZ documentation can be found in the [official docs](https://python.arviz.org/en/latest/index.html).
First time users may find the [quickstart](https://python.arviz.org/en/latest/getting_started/Introduction.html)
to be helpful. Additional guidance can be found in the
[user guide](https://python.arviz.org/en/latest/user_guide/index.html).## Installation
### Stable
ArviZ is available for installation from [PyPI](https://pypi.org/project/arviz/).
The latest stable version can be installed using pip:```
pip install arviz
```ArviZ is also available through [conda-forge](https://anaconda.org/conda-forge/arviz).
```
conda install -c conda-forge arviz
```### Development
The latest development version can be installed from the main branch using pip:```
pip install git+git://github.com/arviz-devs/arviz.git
```Another option is to clone the repository and install using git and setuptools:
```
git clone https://github.com/arviz-devs/arviz.git
cd arviz
python setup.py install
```-------------------------------------------------------------------------------
## [Gallery](https://python.arviz.org/en/latest/examples/index.html)
## Dependencies
ArviZ is tested on Python 3.10, 3.11 and 3.12, and depends on NumPy, SciPy, xarray, and Matplotlib.
## Citation
If you use ArviZ and want to cite it please use [![DOI](http://joss.theoj.org/papers/10.21105/joss.01143/status.svg)](https://doi.org/10.21105/joss.01143)
Here is the citation in BibTeX format
```
@article{arviz_2019,
doi = {10.21105/joss.01143},
url = {https://doi.org/10.21105/joss.01143},
year = {2019},
publisher = {The Open Journal},
volume = {4},
number = {33},
pages = {1143},
author = {Ravin Kumar and Colin Carroll and Ari Hartikainen and Osvaldo Martin},
title = {ArviZ a unified library for exploratory analysis of Bayesian models in Python},
journal = {Journal of Open Source Software}
}
```## Contributions
ArviZ is a community project and welcomes contributions.
Additional information can be found in the [Contributing Readme](https://github.com/arviz-devs/arviz/blob/main/CONTRIBUTING.md)## Code of Conduct
ArviZ wishes to maintain a positive community. Additional details
can be found in the [Code of Conduct](https://github.com/arviz-devs/arviz/blob/main/CODE_OF_CONDUCT.md)## Donations
ArviZ is a non-profit project under NumFOCUS umbrella. If you want to support ArviZ financially, you can donate [here](https://numfocus.org/donate-to-arviz).## Sponsors
[![NumFOCUS](https://www.numfocus.org/wp-content/uploads/2017/07/NumFocus_LRG.png)](https://numfocus.org)