https://christophm.github.io/interpretable-ml-book/
Book about interpretable machine learning
https://christophm.github.io/interpretable-ml-book/
Last synced: 9 months ago
JSON representation
Book about interpretable machine learning
- Host: GitHub
- URL: https://christophm.github.io/interpretable-ml-book/
- Owner: christophM
- License: other
- Created: 2017-03-22T07:47:41.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2025-03-05T15:03:18.000Z (9 months ago)
- Last Synced: 2025-03-06T08:37:22.221Z (9 months ago)
- Language: Jupyter Notebook
- Homepage: https://christophm.github.io/interpretable-ml-book/
- Size: 676 MB
- Stars: 4,847
- Watchers: 138
- Forks: 1,073
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-ml - Interpretable Machine Learning
- awesome-xai - Interpretable Machine Learning
- Awesome-explainable-AI - Interpretable Machine Learning A Guide for Making Black Box Models Explainable
- awesome-text-interpretability - Interpretable Machine Learning
- AwesomeResponsibleAI - Book
- awesome-machine-learning-interpretability - Christoph Molnar, 2021, *Interpretable Machine Learning: A Guide for Making Black Box Models Explainable*
- data-science-learning-path - Interpretable Machine Learning
- awesome-safety-critical-ai - Interpretable Machine Learning: A Guide for Making Black Box Models Explainable
- Data-Science-and-Machine-Learning-Resources - Explanable AI
- machine-learning-resources - Interpretable Machine Learning
- awesome-data-science - Interpretable Machine Learning - Christoph Molnar
- awesome-counterfactual-explanations - [link
- awesome-deeplearning-resources - Interpretable Machine Learning
- awesome-computer-science-websites - Interpretable Machine Learning
- books - 📖 Interpretable machine learning (2018) - Explaining the decisions and behavior of machine learning models. (Machine learning / Alternative history)
- awesome-ppdm - Interpretable ML book
- awesome-datascience - Interpretable Machine Learning: A Guide for Making Black Box Models Explainable - Free GitHub version (Literature and Media / Books)