Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://clay-foundation.github.io/model/
The Clay Foundation Model - An open source AI model and interface for Earth
https://clay-foundation.github.io/model/
digital-elevation-model earth-observation embeddings foundation-model sentinel-1 sentinel-2
Last synced: about 1 month ago
JSON representation
The Clay Foundation Model - An open source AI model and interface for Earth
- Host: GitHub
- URL: https://clay-foundation.github.io/model/
- Owner: Clay-foundation
- License: apache-2.0
- Created: 2023-09-29T12:08:10.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-12-03T08:54:08.000Z (about 1 month ago)
- Last Synced: 2024-12-04T11:39:22.150Z (about 1 month ago)
- Topics: digital-elevation-model, earth-observation, embeddings, foundation-model, sentinel-1, sentinel-2
- Language: Jupyter Notebook
- Homepage: https://clay-foundation.github.io/model/
- Size: 175 MB
- Stars: 381
- Watchers: 23
- Forks: 48
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# Clay Foundation Model
[![Jupyter Book Badge](https://jupyterbook.org/badge.svg)](https://clay-foundation.github.io/model)
[![Deploy Book Status](https://github.com/Clay-foundation/model/actions/workflows/deploy-docs.yml/badge.svg)](https://github.com/Clay-foundation/model/actions/workflows/deploy-docs.yml)
[![Continuous Integration Tests Status](https://github.com/Clay-foundation/model/actions/workflows/test.yml/badge.svg)](https://github.com/Clay-foundation/model/actions/workflows/test.yml)An open source AI model and interface for Earth.
## Quickstart
Launch into a [JupyterLab](https://jupyterlab.readthedocs.io) environment on
| [Binder](https://mybinder.readthedocs.io/en/latest) | [SageMaker Studio Lab](https://studiolab.sagemaker.aws) |
|:--:|:--:|
| [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/Clay-foundation/model/main) | [![Open in SageMaker Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/Clay-foundation/model/blob/main/docs/tutorials/clay-v1-wall-to-wall.ipynb) |## Installation
### Basic
To help out with development, start by cloning this [repo-url](/../../)
git clone
cd modelThen we recommend [using mamba](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html)
to install the dependencies. A virtual environment will also be created with Python and
[JupyterLab](https://github.com/jupyterlab/jupyterlab) installed.mamba env create --file environment.yml
> [!NOTE]
> The command above will only work for Linux devices with CUDA GPUs. For installation
> on macOS devices (either Intel or ARM chips), follow the 'Advanced' section in
> https://clay-foundation.github.io/model/getting-started/installation.html#advancedActivate the virtual environment first.
mamba activate claymodel
Finally, double-check that the libraries have been installed.
mamba list
## Usage
### Running jupyter lab
mamba activate claymodel
python -m ipykernel install --user --name claymodel # to install virtual env properly
jupyter kernelspec list --json # see if kernel is installed
jupyter lab &### Running the model
The neural network model can be ran via
[LightningCLI v2](https://pytorch-lightning.medium.com/introducing-lightningcli-v2supercharge-your-training-c070d43c7dd6).
To check out the different options available, and look at the hyperparameter
configurations, run:python trainer.py --help
To quickly test the model on one batch in the validation set:
python trainer.py fit --model ClayMAEModule --data ClayDataModule --config configs/config.yaml --trainer.fast_dev_run=True
To train the model:
python trainer.py fit --model ClayMAEModule --data ClayDataModule --config configs/config.yaml
More options can be found using `python trainer.py fit --help`, or at the
[LightningCLI docs](https://lightning.ai/docs/pytorch/2.1.0/cli/lightning_cli.html).## Contributing
### Writing documentation
Our Documentation uses [Jupyter Book](https://jupyterbook.org/intro.html).
Install it with:
```bash
pip install -U jupyter-book
```Then build it with:
```bash
jupyter-book build docs/
```You can preview the site locally with:
```bash
python -m http.server --directory _build/html
```There is a GitHub Action on `./github/workflows/deploy-docs.yml` that builds the site and pushes it to GitHub Pages.