Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://dmbee.github.io/seglearn/
Python module for machine learning time series:
https://dmbee.github.io/seglearn/
data-science machine-learning python time-series
Last synced: about 2 months ago
JSON representation
Python module for machine learning time series:
- Host: GitHub
- URL: https://dmbee.github.io/seglearn/
- Owner: dmbee
- License: bsd-3-clause
- Created: 2018-03-05T20:53:59.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2022-08-27T09:01:18.000Z (over 2 years ago)
- Last Synced: 2024-08-01T22:29:58.200Z (5 months ago)
- Topics: data-science, machine-learning, python, time-series
- Language: Python
- Homepage: https://dmbee.github.io/seglearn/
- Size: 18.6 MB
- Stars: 567
- Watchers: 27
- Forks: 64
- Open Issues: 5
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- awesome-time-series - Seglearn: A Python Package for Learning Sequences and Time Series
README
.. -*- mode: rst -*-
.. _scikit-learn: http://scikit-learn.org/stable/
.. _scikit-learn-contrib: https://github.com/scikit-learn-contrib
|Travis|_ |Pypi|_ |PythonVersion|_ |Coveralls|_ |Downloads|_
.. |Travis| image:: https://travis-ci.com/dmbee/seglearn.svg?branch=master
.. _Travis: https://app.travis-ci.com/github/dmbee/seglearn.. |Pypi| image:: https://badge.fury.io/py/seglearn.svg
.. _Pypi: https://badge.fury.io/py/seglearn.. |PythonVersion| image:: https://img.shields.io/pypi/pyversions/seglearn.svg
.. _PythonVersion: https://img.shields.io/pypi/pyversions/seglearn.svg.. |Coveralls| image:: https://coveralls.io/repos/github/dmbee/seglearn/badge.svg?branch=master&&service=github
.. _Coveralls: https://coveralls.io/github/dmbee/seglearn?branch=master&service=github.. |Downloads| image:: https://pepy.tech/badge/seglearn
.. _Downloads: https://pepy.tech/project/seglearnseglearn
========Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn_.
Documentation
-------------Installation documentation, API documentation, and examples can be found on the
documentation_... _documentation: https://dmbee.github.io/seglearn/
Dependencies
~~~~~~~~~~~~seglearn is tested to work under Python 3.5, 3.6, and 3.8.
The dependency requirements are:* scipy(>=0.17.0)
* numpy(>=1.11.0)
* scikit-learn(>=0.21.3)seglearn is now also compatible with sklearn 1.0+
To run the examples, you need:
* matplotlib(>=2.0.0)
* keras (>=2.1.4) for the neural network examples
* pandasIn order to run the test cases, you need:
* pytest
The neural network examples were tested on keras using the tensorflow-gpu backend, which is recommended.
Installation
~~~~~~~~~~~~seglearn-learn is currently available on the PyPi's repository and you can
install it via `pip`::pip install -U seglearn
or if you use python3::
pip3 install -U seglearn
If you prefer, you can clone it and run the setup.py file. Use the following
commands to get a copy from GitHub and install all dependencies::git clone https://github.com/dmbee/seglearn.git
cd seglearn
pip install .Or install using pip and GitHub::
pip install -U git+https://github.com/dmbee/seglearn.git
Testing
~~~~~~~After installation, you can use `pytest` to run the test suite from seglearn's root directory::
python -m pytest
Change Log
----------Version history can be viewed in the `Change Log
`_.Development
-----------The development of this scikit-learn-contrib is in line with the one
of the scikit-learn community. Therefore, you can refer to their
`Development Guide
`_.Please submit new pull requests on the dev branch with unit tests and an example to
demonstrate any new functionality / api changes.Citing seglearn
~~~~~~~~~~~~~~~If you use seglearn in a scientific publication, we would appreciate
citations to the following paper::@article{arXiv:1803.08118,
author = {David Burns, Cari Whyne},
title = {Seglearn: A Python Package for Learning Sequences and Time Series},
journal = {arXiv},
year = {2018},
url = {https://arxiv.org/abs/1803.08118}
}If you use the seglearn test data in a scientific publication, we would appreciate
citations to the following paper::@article{arXiv:1802.01489,
author = {David Burns, Nathan Leung, Michael Hardisty, Cari Whyne, Patrick Henry, Stewart McLachlin},
title = {Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch},
journal = {arXiv},
year = {2018},
url = {https://arxiv.org/abs/1802.01489}
}