Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://fartaha.github.io/ml-advanced-probabilistic-methods/

Summary of CS-E4820 - Machine Learning: Advanced Probabilistic Methods
https://fartaha.github.io/ml-advanced-probabilistic-methods/

Last synced: 3 months ago
JSON representation

Summary of CS-E4820 - Machine Learning: Advanced Probabilistic Methods

Awesome Lists containing this project

README

        

![visitor badge](https://visitor-badge.glitch.me/badge?page_id=fartaha.visitor-badge)

# ml-advanced-probabilistic-methods
Summary of CS-E4820 - Machine Learning: Advanced Probabilistic Methods @ Aalto University

> Summary of Lec 1

Summary of Lec 1

Main Book

Bishop


### Ingredients of probabilistic modeling

1. Models
* Bayesian networks
* Sparse Bayesian linear regression
* Gaussian mixture models
* latent linear models
2. Methods for inference
* maximum likelihood
* maximum a posteriori (MAP)
* Laplace approximation
* expectation maximization (EM)
* Variational Bayes (VB)
* Stochastic variational inference (SVI)
* ::MCMC methods (missing)::
3. Ways to select between models

..


> **Example to use LaTEX**

$$\begin{aligned}
&\text { Table 1: A table without vertical lines. }\\
&\begin{array}{lcc}
\hline & \text { Treatment A } & \text { Treatment B } \\
\hline \text { John Smith } & 1 & 2 \\
\text { Jane Doe } & - & 3 \\
\text { Mary Johnson } & 4 & 5 \\
\hline
\end{array}
\end{aligned}$$