Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/0h-n0/torchex
Pytorch Extension Library.
https://github.com/0h-n0/torchex
deep-learning deep-neural-networks machine-learning ml neural-network pytorch
Last synced: 2 months ago
JSON representation
Pytorch Extension Library.
- Host: GitHub
- URL: https://github.com/0h-n0/torchex
- Owner: 0h-n0
- License: mit
- Created: 2018-11-08T09:24:58.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-04-16T06:55:21.000Z (over 1 year ago)
- Last Synced: 2024-10-22T19:50:13.249Z (2 months ago)
- Topics: deep-learning, deep-neural-networks, machine-learning, ml, neural-network, pytorch
- Language: Python
- Homepage: https://torchex.readthedocs.io/en/latest/?badge=latest
- Size: 111 KB
- Stars: 6
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
[![PYTHON version](https://img.shields.io/badge/python-3.6,3.7,3.8-blue.svg)](https://github.com/0h-n0/torchex)
[![PyPI version](https://img.shields.io/pypi/v/torchex.svg)](https://badge.fury.io/py/torchex)
[![Downloads](https://img.shields.io/pypi/dm/torchex.svg)](https://pypi.org/project/torchex/)# (WIP) `torchex library`
`torchex` library provides advanced Neural Network Layers. You can easily use them like using original pytorch.
## Installation
```
$ pip install torchex
```## Requirements
* Pytorch >= 1.0
## Documentation
* https://torchex.readthedocs.io/en/latest/index.html
## How to use
### Lazy Style Model Definition
```python
import torch
import torchex.nn as exnnnet = exnn.Linear(10)
# You don't need to give the size of input for this module.
# This network is equivalent to `nn.Linear(100, 10)`.x = troch.randn(10, 100)
y = net(x)
```### torchex.nn list
* `torchex.nn.Pass`
* `torchex.nn.Flatten`
* `torchex.nn.Linear`
* Lazy style
* `torchex.nn.Conv1d`
* Lazy style
* `torchex.nn.Conv2d`
* Lazy style
* `torchex.nn.Conv3d`
* Lazy style
* `torchex.nn.Conv2dLocal`
* `torchex.nn.GlobalAvgPool1d`
* `torchex.nn.GlobalAvgPool2d`
* `torchex.nn.GlobalMaxPool1d`
* `torchex.nn.GlobalMaxPool2d`
* `torchex.nn.MaxAvgPool2d`
* `torch.nn.Crop2d`
* `torch.nn.Crop3d`
* `torch.nn.MLPConv2d`
* `torch.nn.UpsampleConvLayer`
* `torch.nn.CordConv2d`
* `torch.nn.DFT1d`
* `torch.nn.DFT2d`
* `torch.nn.PeriodicPad2d`
* `torch.nn.PeriodicPad3d`
* `torch.nn.Highway`
* `torch.nn.Inception`
* `torch.nn.InceptionBN`
* `torch.nn.IndRNNCell`
* `torch.nn.IndRNNTanhCell`
* `torch.nn.IndRNNReLuCell`
* `torch.nn.IndRNN`
* `torch.nn.GraphLinear`
* `torch.nn.GraphConv`
* `torch.nn.SparseMM`
* `torch.nn.GraphBatchNrom`### torchex.data.transforms
* `torchex.data.transforms.PadRandomSift`
* `torchex.data.transforms.RandomResize`### torchex.data.attribute
for visualization
* `torchex.attribute.IntegratedGradients`