Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/1adrianb/pytorch-estimate-flops

Estimate/count FLOPS for a given neural network using pytorch
https://github.com/1adrianb/pytorch-estimate-flops

convolutional-neural-networks deep-learning flops pytorch pytorch-estimate-flops

Last synced: 6 days ago
JSON representation

Estimate/count FLOPS for a given neural network using pytorch

Awesome Lists containing this project

README

        

[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause) [![Test Pytorch Flops Counter](https://github.com/1adrianb/pytorch-estimate-flops/workflows/Test%20Pytorch%20Flops%20Counter/badge.svg)](https://travis-ci.com/1adrianb/pytorch-estimate-flops)
[![PyPI](https://img.shields.io/pypi/v/pthflops.svg?style=flat)](https://pypi.org/project/pthflops/)

# pytorch-estimate-flops

Simple pytorch utility that estimates the number of FLOPs for a given network. For now only some basic operations are supported (basically the ones I needed for my models). More will be added soon.

All contributions are welcomed.

## Installation

You can install the model using pip:

```bash
pip install pthflops
```
or directly from the github repository:
```bash
git clone https://github.com/1adrianb/pytorch-estimate-flops && cd pytorch-estimate-flops
python setup.py install
```

Note: pytorch 1.8 or newer is recommended.

## Example

```python
import torch
from torchvision.models import resnet18

from pthflops import count_ops

# Create a network and a corresponding input
device = 'cuda:0'
model = resnet18().to(device)
inp = torch.rand(1,3,224,224).to(device)

# Count the number of FLOPs
count_ops(model, inp)
```

Ignoring certain layers:

```python
import torch
from torch import nn
from pthflops import count_ops

class CustomLayer(nn.Module):
def __init__(self):
super(CustomLayer, self).__init__()
self.conv1 = nn.Conv2d(5, 5, 1, 1, 0)
# ... other layers present inside will also be ignored

def forward(self, x):
return self.conv1(x)

# Create a network and a corresponding input
inp = torch.rand(1,5,7,7)
net = nn.Sequential(
nn.Conv2d(5, 5, 1, 1, 0),
nn.ReLU(inplace=True),
CustomLayer()
)

# Count the number of FLOPs, jit mode:
count_ops(net, inp, ignore_layers=['CustomLayer'])

# Note: if you are using python 1.8 or newer with fx instead of jit, the naming convention changed. As such, you will have to pass ['_2_conv1']
# Please check your model definition to account for this.
# Count the number of FLOPs, fx mode:
count_ops(net, inp, ignore_layers=['_2_conv1'])

```