An open API service indexing awesome lists of open source software.

https://github.com/1sumer/python-repo

This repository provides a detailed collection of Python scripts and notebooks for Implementing various EDA Project.
https://github.com/1sumer/python-repo

eda matplotlib numpy pandas python seaborn

Last synced: 10 months ago
JSON representation

This repository provides a detailed collection of Python scripts and notebooks for Implementing various EDA Project.

Awesome Lists containing this project

README

          

# Python for Data Analysis and Visualization

## 📌 Project Overview
This repository provides a comprehensive guide to data analysis and visualization using Python. It covers essential libraries like **NumPy, Pandas, Matplotlib, and Seaborn**, along with **Exploratory Data Analysis (EDA)** techniques. The goal is to equip users with practical skills for handling, processing, visualizing, and extracting insights from data.

---

## 🎯 Objectives
- 🔹 **Understand Python Data Libraries**: Learn the core functionalities of **NumPy, Pandas, Matplotlib, and Seaborn**.
- 🔹 **Perform Exploratory Data Analysis (EDA)**: Gain insights from data using statistical and visualization techniques.
- 🔹 **Data Manipulation**: Learn how to **clean, transform, and preprocess data** effectively.
- 🔹 **Data Visualization**: Create compelling **visualizations** to understand data trends and patterns.

---

## 📂 Content

### **1️⃣ NumPy: Numerical Computing**
- 📌 Creating and manipulating **arrays**
- 📌 Array operations and **broadcasting**
- 📌 **Statistical and mathematical** functions
- 📌 **Indexing, slicing, and reshaping**
- 📌 Handling **missing values and NaNs**

### **2️⃣ Pandas: Data Manipulation**
- 📌 Loading datasets from **CSV, Excel, and databases**
- 📌 **DataFrame and Series** objects
- 📌 Data **selection, filtering, and grouping**
- 📌 Handling **missing data**
- 📌 **Merging and joining** datasets
- 📌 **Pivot tables and multi-indexing**

### **3️⃣ Matplotlib: Data Visualization**
- 📌 Creating **basic plots** (line, bar, scatter, histogram, etc.)
- 📌 Customizing plots (**titles, labels, legends, colors**)
- 📌 **Subplots and multiple plots**
- 📌 **Saving and exporting** figures

### **4️⃣ Seaborn: Statistical Data Visualization**
- 📌 **Pair plots and correlation heatmaps**
- 📌 **Box plots and violin plots**
- 📌 **Distribution and density plots**
- 📌 **Categorical plots** (bar, count, strip, swarm plots)
- 📌 **Advanced visualizations** with themes and styles

### **5️⃣ Exploratory Data Analysis (EDA)**
- 📌 Understanding **data distributions**
- 📌 Detecting and handling **outliers**
- 📌 Identifying **correlations between variables**
- 📌 **Feature engineering and scaling**
- 📌 **Principal Component Analysis (PCA)**
- 📌 **Case study**: EDA on real-world datasets

---

## ⚙️ How to Use

### **🔧 Setup**
1️⃣ Install **Python 3.x**
2️⃣ Use `pip install -r requirements.txt` to install dependencies
3️⃣ Run Jupyter Notebook using `jupyter notebook`

### **▶️ Run Scripts**
- 📌 Navigate to individual folders for **NumPy, Pandas, Matplotlib, Seaborn, and EDA**.
- 📌 Open **Jupyter notebooks** for interactive exploration.
- 📌 Modify scripts and test on **your datasets**.

---

## 📌 Prerequisites
- ✅ Basic **Python programming** knowledge
- ✅ Understanding of **data structures**
- ✅ Familiarity with **Jupyter Notebook**

---

## 📊 Algorithms & Techniques in Repository

| **Topic** | **Description** |
|---------------|--------------------------------------------------|
| **NumPy** | Numerical computations and array manipulations. |
| **Pandas** | Data manipulation and preprocessing. |
| **Matplotlib** | Basic and advanced data visualizations. |
| **Seaborn** | Statistical visualization with aesthetic designs. |
| **EDA** | Extracting insights through data exploration. |

---

## 📢 Conclusion
This repository serves as a valuable **resource** for anyone looking to **master Python for data analysis and visualization**. By exploring various **examples and exercises**, users can build strong foundational skills for working with **data**.

---

## 📝 License
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details.

---

## 📚 Acknowledgements
- 🔹 [NumPy Documentation](https://numpy.org/doc/stable/)
- 🔹 [Pandas Documentation](https://pandas.pydata.org/docs/)
- 🔹 [Matplotlib Documentation](https://matplotlib.org/stable/contents.html)
- 🔹 [Seaborn Documentation](https://seaborn.pydata.org/)