Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/2vin/PyYAT
Semi-Automatic Yolo Annotation Tool In Python
https://github.com/2vin/PyYAT
annotation-tool computer-vision deeplearning yolo
Last synced: 3 months ago
JSON representation
Semi-Automatic Yolo Annotation Tool In Python
- Host: GitHub
- URL: https://github.com/2vin/PyYAT
- Owner: 2vin
- Created: 2022-06-24T21:18:20.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2023-08-23T22:43:19.000Z (over 1 year ago)
- Last Synced: 2024-08-02T01:25:11.837Z (6 months ago)
- Topics: annotation-tool, computer-vision, deeplearning, yolo
- Language: Python
- Homepage:
- Size: 1.25 MB
- Stars: 18
- Watchers: 1
- Forks: 8
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-object-detection-datasets - 2vin/PyYAT - Automatic Yolo Annotation Tool In Python. (Summary)
- awesome-yolo-object-detection - 2vin/PyYAT - Automatic Yolo Annotation Tool In Python. (Applications)
- awesome-yolo-object-detection - 2vin/PyYAT - Automatic Yolo Annotation Tool In Python. (Applications)
README
# PyYAT
Semi-Automatic Yolo Annotation Tool In Python
PyYAT
Using this tool, we can annotate bounding boxes for image annotation in YOLO format.
It uses YOLOv3-608 weights to pre-annotate the bounding boxes in images. It reduces time and efforts in annotating large datasets by upto 90%.## About the repository
* 'yolo_annotation_tool.py' : Main file to load images one-by-one from the dataset, and then annotate them.
* 'recognize_objects.py' : Object recognition class for pre-annotating images before manual annotation process.
* 'config.ini' : Edit data folder, output folder and label file path according to your preference. 'annotation_index' is automatically updated based on index of the last saved annotated image.
* 'labels.csv' : List of all the classes to be annotated.
* '/models' : It contains YOLOv3-608 weights (to be downloaded), cfg and coco.names files.
* '/data' : Sample of input images to be annotated
* '/output' : Sample of output files after annotation.## Usage:
```
python yolo_annotation_tool.py
```
## Key buttons:
* 'S' : Save annotations
* 'L' : Change current class of labeling
* 'Esc' : Exit the code## Input images
Image 1
Image 2
Image 3
## Output images (Pre-annotation)
Image 1
Image 2
Image 3