Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/34j/boost-loss

Utilities for easy use of custom losses in CatBoost, LightGBM, XGBoost.
https://github.com/34j/boost-loss

autograd catboost custom-loss custom-loss-functions evaluation-metrics gbdt gradient-boosting hacktoberfest lightgbm pytorch scikit-learn sklearn sklearn-compatible xgboost

Last synced: 3 months ago
JSON representation

Utilities for easy use of custom losses in CatBoost, LightGBM, XGBoost.

Awesome Lists containing this project

README

        

# Boost Loss



CI Status


Documentation Status


Test coverage percentage




Poetry


black


pre-commit




PyPI Version

Supported Python versions
License

Utilities for easy use of custom losses in CatBoost, LightGBM, XGBoost. This sounds very simple, but in reality it took a lot of work.

## Installation

Install this via pip (or your favourite package manager):

```shell
pip install boost-loss
```

## Usage

### Basic Usage

```python
import numpy as np

from boost_loss import LossBase
from numpy.typing import NDArray

class L2Loss(LossBase):
def loss(self, y_true: NDArray, y_pred: NDArray) -> NDArray:
return (y_true - y_pred) ** 2 / 2

def grad(self, y_true: NDArray, y_pred: NDArray) -> NDArray: # dL/dy_pred
return - (y_true - y_pred)

def hess(self, y_true: NDArray, y_pred: NDArray) -> NDArray: # d^2L/dy_pred^2
return np.ones_like(y_true)
```

```python
import lightgbm as lgb

from boost_loss import apply_custom_loss
from sklearn.datasets import load_boston

X, y = load_boston(return_X_y=True)
apply_custom_loss(lgb.LGBMRegressor(), L2Loss()).fit(X, y)
```

Built-in losses are available. [^bokbokbok]

```python
from boost_loss.regression import LogCoshLoss
```

### [`torch.autograd`](https://pytorch.org/docs/stable/autograd.html) Loss [^autograd]

```python
import torch

from boost_loss.torch import TorchLossBase

class L2LossTorch(TorchLossBase):
def loss_torch(self, y_true: torch.Tensor, y_pred: torch.Tensor) -> torch.Tensor:
return (y_true - y_pred) ** 2 / 2
```

## Contributors ✨

Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):



34j
34j

💻 🤔 📖

This project follows the [all-contributors](https://github.com/all-contributors/all-contributors) specification. Contributions of any kind welcome!

[^bokbokbok]: Inspired by [orchardbirds/bokbokbok](https://github.com/orchardbirds/bokbokbok)
[^autograd]: Inspired by [TomerRonen34/treeboost_autograd](https://github.com/TomerRonen34/treeboost_autograd)