Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/52CV/CV-Surveys
计算机视觉相关综述。包括目标检测、跟踪........
https://github.com/52CV/CV-Surveys
Last synced: 3 months ago
JSON representation
计算机视觉相关综述。包括目标检测、跟踪........
- Host: GitHub
- URL: https://github.com/52CV/CV-Surveys
- Owner: 52CV
- Created: 2021-01-05T02:58:20.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-10-30T02:17:41.000Z (4 months ago)
- Last Synced: 2024-10-30T04:59:15.037Z (4 months ago)
- Homepage:
- Size: 907 KB
- Stars: 1,877
- Watchers: 38
- Forks: 242
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-yolo-object-detection - 52CV/CV-Surveys - Surveys?style=social"/> : 计算机视觉相关综述。包括目标检测、跟踪........ (Summary)
- awesome-yolo-object-detection - 52CV/CV-Surveys - Surveys?style=social"/> : 计算机视觉相关综述。包括目标检测、跟踪........ (Summary)
README
![]()
## 查看2024年综述文献点这里↘️[2024-CV-Surveys](https://github.com/52CV/CV-Surveys)
## 2024 年论文分类汇总戳这里
↘️[WACV-2024-Papers](https://github.com/52CV/WACV-2024-Papers)## 2023 年论文分类汇总戳这里
↘️[CVPR-2023-Papers](https://github.com/52CV/CVPR-2023-Papers)
↘️[WACV-2023-Papers](https://github.com/52CV/WACV-2023-Papers)
↘️[ICCV-2023-Papers](https://github.com/52CV/ICCV-2023-Papers)
↘️[2023-CV-Surveys](https://github.com/52CV/CV-Surveys/blob/main/2023-CV-Surveys.md)## [2022 年论文分类汇总戳这里](#0000)
## [2021 年论文分类汇总戳这里](#000)
## [2020 年论文分类汇总戳这里](#00)# 2024-CV-Surveys
2024 年,计算机视觉相关综述。包括目标检测、跟踪........
### :green_book::green_book::green_book:在[【我爱计算机视觉】微信公众号](https://user-images.githubusercontent.com/62801906/163739684-175f0b8a-871e-4a41-b310-b549625fdcb1.png)后台回复“CV综述”,即可收到本文列出的全部论文的打包下载。至11月7日已公开 403+1 篇。
1月份共计44篇。
2月份共计36篇。
3月份共计25篇。
4月份共计33篇。
5月份共计50篇。
6月份共计40篇。
7月份共计48篇。
8月份共计46篇。
9月份共计36篇。
10月份共计38篇。
计396篇。## 目录
|:cat:|:dog:|:tiger:|:wolf:|
|------|------|------|------|
|[1.Unkown(未分)](#1)|## Biometrics
* [Reversing the Irreversible: A Survey on Inverse Biometrics](https://arxiv.org/abs/2401.02861)
[2024-01-08]## Data Augmentation
* [A survey of synthetic data augmentation methods in computer vision](https://arxiv.org/abs/2403.10075)
[2024-03-18]## Gaze estimation
* [A Survey on Deep Learning-based Gaze Direction Regression: Searching for the State-of-the-art](https://arxiv.org/abs/2410.17082)
[2024-10-23]## Fish-eye Camera(鱼眼相机)
* [A Comprehensive Overview of Fish-Eye Camera Distortion Correction Methods](https://arxiv.org/abs/2401.00442)
[2024-01-02]
* [Surround-View Fisheye Optics in Computer Vision and Simulation: Survey and Challenge](https://arxiv.org/abs/2402.12041)
[2024-02-20]## Memes Detection
* [Toxic Memes: A Survey of Computational Perspectives on the Detection and Explanation of Meme Toxicities](https://arxiv.org/abs/2406.07353)
[2024-06-12]## Fake News Detection(虚假新闻检测)
* [Fact-checking based fake news detection: a review](https://arxiv.org/abs/2401.01717)
[2024-01-04]## Scene Graph Generation
* [A Review and Efficient Implementation of Scene Graph Generation Metrics](https://arxiv.org/abs/2404.09616)
:star:[code](https://lorjul.github.io/sgbench/)
[2024-04-16]## Sound
* 音频描述
* [Audio Description Generation in the Era of LLMs and VLMs: A Review of Transferable Generative AI Technologies](https://arxiv.org/abs/2410.08860)
[2024-10-14]## Deepfake
* [Deepfake Generation and Detection: A Benchmark and Survey](https://arxiv.org/abs/2403.17881)
[2024-03-27]
:star:[code](https://github.com/flyingby/Awesome-Deepfake-Generation-and-Detection)
* [A Timely Survey on Vision Transformer for Deepfake Detection](https://arxiv.org/abs/2405.08463)
[2024-05-15]
* [Media Forensics and Deepfake Systematic Survey](https://arxiv.org/abs/2406.13295)
[2024-06-21]
* [The Tug-of-War Between Deepfake Generation and Detection](https://arxiv.org/abs/2407.06174)
[2024-07-09]## Industrial Anomaly Detection(工业缺陷检测)
* [A Systematic Review of Available Datasets in Additive Manufacturing](https://arxiv.org/abs/2401.15448)
[2024-01-30]
* [A Comprehensive Survey on Machine Learning Driven Material Defect Detection: Challenges, Solutions, and Future Prospects](https://arxiv.org/abs/2406.07880)
[2024-06-13]
* [A PRISMA Driven Systematic Review of Publicly Available Datasets for Benchmark and Model Developments for Industrial Defect Detection](https://arxiv.org/abs/2406.07694)
[2024-06-13]
* [Transformers and Large Language Models for Efficient Intrusion Detection Systems: A Comprehensive Survey](https://arxiv.org/abs/2408.07583)
[2024-08-15]
* [A Survey on RGB, 3D, and Multimodal Approaches for Unsupervised Industrial Anomaly Detection](https://arxiv.org/abs/2410.21982)
:star:[code](https://github.com/Sunny5250/Awesome-Multi-Setting-UIAD)
[2024-10-30]
* VAD
* [A Survey on Visual Anomaly Detection: Challenge, Approach, and Prospect](https://arxiv.org/abs/2401.16402)
[2024-01-30]
* 点云的工业系统 3D 缺陷检测和分类
* [Advancements in Point Cloud-Based 3D Defect Detection and Classification for Industrial Systems: A Comprehensive Survey](https://arxiv.org/abs/2402.12923)
[2024-02-21]
* OOD
* [Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey](https://arxiv.org/abs/2407.21794)(https://github.com/AtsuMiyai/Awesome-OOD-VLM)
[2024-08-01]## Multi-Label Learning(多标签学习)
* [Deep Learning for Multi-Label Learning: A Comprehensive Survey](https://arxiv.org/abs/2401.16549)
[2024-01-31]## Few/Zero-Shot Learning/DG/A(小/零样本/域泛化/域适应)
* 零样本
* [Improving deep learning with prior knowledge and cognitive models: A survey on enhancing explainability, adversarial robustness and zero-shot learning](https://arxiv.org/abs/2403.07078)
[2024-03-13]## Deep learning
* 长尾学习
* [A Systematic Review on Long-Tailed Learning](https://arxiv.org/abs/2408.00483)
[2024-08-02]## Machine Learning(机器学习)
* [A Comprehensive Review of Machine Learning Advances on Data Change: A Cross-Field Perspective](https://arxiv.org/abs/2402.12627)
[2024-02-21]
* [Open-world Machine Learning: A Review and New Outlooks](https://arxiv.org/abs/2403.01759)
[2024-03-06]无PDF
* [Inference Attacks in Machine Learning as a Service: A Taxonomy, Review, and Promising Directions](https://arxiv.org/abs/2406.02027)
[2024-06-05]
* [Machine Learning for Methane Detection and Quantification from Space -- A survey](https://arxiv.org/abs/2408.15122)
[2024-08-28]
* [Digital Twins in Additive Manufacturing: A Systematic Review](https://arxiv.org/abs/2409.00877)
[2024-09-04]
* 持续学习
* [Continual Learning with Pre-Trained Models: A Survey](https://arxiv.org/abs/2401.16386)
:star:[code](https://github.com/sun-hailong/LAMDA-PILOT)
[2024-01-30]
* 迁移学习
* [Which Model to Transfer? A Survey on Transferability Estimation](https://arxiv.org/abs/2402.15231)
:star:[code](https://github.com/YuheD/awesome-model-transferability-estimation)
[2024-02-26]
* 联邦学习
* [Exploring the Practicality of Federated Learning: A Survey Towards the Communication Perspective](https://arxiv.org/abs/2405.20431)
[2024-06-03]
* 木马攻击
* [A Survey of Trojan Attacks and Defenses to Deep Neural Networks](https://arxiv.org/abs/2408.08920)
[2024-08-20]
* 对抗攻击
* [Proactive Schemes: A Survey of Adversarial Attacks for Social Good](https://arxiv.org/abs/2409.16491)
[2024-09-26]
* [Adversarial Attacks of Vision Tasks in the Past 10 Years: A Survey](https://arxiv.org/abs/2410.23687)
[2024-11-01]## Object Re-Id/Pose Estimation
* 物体重识别
* [Transformer for Object Re-Identification: A Survey](https://arxiv.org/abs/2401.06960)
[2024-01-17]
* 物体姿态估计
* [Deep Learning-Based Object Pose Estimation: A Comprehensive Survey](https://arxiv.org/abs/2405.07801)
:star:[code](https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation)
[2024-05-14]## Self-supervised Learning
* 自监督
* [Masked Modeling for Self-supervised Representation Learning on Vision and Beyond](https://github.com/Lupin1998/Awesome-MIM)
:star:[code](https://github.com/Lupin1998/Awesome-MIM)
[2024-01-03]
* [A review on discriminative self-supervised learning methods](https://arxiv.org/abs/2405.04969)
[2024-05-09]
* [Masked Image Modeling: A Survey](https://arxiv.org/abs/2408.06687)
[2024-08-14]
* [A Survey of the Self Supervised Learning Mechanisms for Vision Transformers](https://arxiv.org/abs/2408.17059)
[2024-09-02]
* 无监督学习
* [A Survey on Deep Clustering: From the Prior Perspective](https://arxiv.org/abs/2406.19602)
[2024-07-01]## Neural Radiance Fields (NeRF)
* [Neural Radiance Field-based Visual Rendering: A Comprehensive Review](https://arxiv.org/abs/2404.00714)
[2024-04-02]
* [Dynamic NeRF: A Review](https://arxiv.org/abs/2405.08609)
[2024-05-15]## Human Object Interaction(人机交互)
* [How Can Large Language Models Enable Better Socially Assistive Human-Robot Interaction: A Brief Survey](https://arxiv.org/abs/2404.00938)
[2024-04-02]
* [A Review of Human-Object Interaction Detection](https://arxiv.org/abs/2408.10641)
[2024-08-21]## Visual Question Answering(视觉问答)
* [Visual Question Answering in Ophthalmology: A Progressive and Practical Perspective](https://arxiv.org/abs/2410.16662)
[2024-10-23]## Robot/SLAM
* [Event-based Sensor Fusion and Application on Odometry: A Survey](https://arxiv.org/abs/2410.15480)
[2024-10-22]
* SLAM
* [How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey](https://arxiv.org/abs/2402.13255)
[2024-02-21]
* VR
* [AI-Enhanced Virtual Reality in Medicine: A Comprehensive Survey](https://arxiv.org/abs/2402.03093)
[2024-02-06]
* 地理定位
* [Computer Vision for Multimedia Geolocation in Human Trafficking Investigation: A Systematic Literature Review](https://arxiv.org/abs/2402.15448)
[2024-02-26]
* 机器人
* [Survey on Datasets for Perception in Unstructured Outdoor Environments](https://arxiv.org/abs/2404.18750)
[2024-04-30]
* [A Brief Survey on Leveraging Large Scale Vision Models for Enhanced Robot Grasping](https://arxiv.org/abs/2406.11786)
[2024-06-18]
* [A Survey of Embodied Learning for Object-Centric Robotic Manipulation](https://arxiv.org/abs/2408.11537)
:star:[code](https://github.com/RayYoh/OCRM_survey)
[2024-08-22]
* [Visual Servoing for Robotic On-Orbit Servicing: A Survey](https://arxiv.org/abs/2409.02324)
[2024-09-05]
* [Neural Fields in Robotics: A Survey](https://arxiv.org/abs/2410.20220)
[2024-10-29]
* PR
* [General Place Recognition Survey: Towards Real-World Autonomy](https://arxiv.org/abs/2405.04812)
:star:[code](https://github.com/MetaSLAM/GPRS)
[2024-05-09]## Autonomous Driving(自动驾驶)
* [A Survey on Autonomous Driving Datasets: Data Statistic, Annotation, and Outlook](https://arxiv.org/abs/2401.01454)
[2024-01-04]
* [Data-Centric Evolution in Autonomous Driving: A Comprehensive Survey of Big Data System, Data Mining, and Closed-Loop Technologies](https://arxiv.org/abs/2401.12888)
[2024-01-24]
* [A Survey for Foundation Models in Autonomous Driving](https://arxiv.org/abs/2402.01105)
[2024-02-05]
* [Review of the Learning-based Camera and Lidar Simulation Methods for Autonomous Driving Systems](https://arxiv.org/abs/2402.10079)
[2024-02-16]
* [Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review](https://arxiv.org/abs/2402.10086)
[2024-02-16]
* [A Survey of Vision Transformers in Autonomous Driving: Current Trends and Future Directions](https://arxiv.org/abs/2403.07542)
[2024-03-13]
* [Monocular 3D lane detection for Autonomous Driving: Recent Achievements, Challenges, and Outlooks](https://arxiv.org/abs/2404.06860)
[2024-04-11]
* [Neural Radiance Field in Autonomous Driving: A Survey](https://export.arxiv.org/abs/2404.13816)
[2024-04-23]
* [Collaborative Perception Datasets in Autonomous Driving: A Survey](https://export.arxiv.org/abs/2404.14022)
[2024-04-23]
* [A Survey on Intermediate Fusion Methods for Collaborative Perception Categorized by Real World Challenges](https://export.arxiv.org/abs/2404.16139)
[2024-04-26]
* [Vision-based 3D occupancy prediction in autonomous driving: a review and outlook](https://arxiv.org/abs/2405.02595)
:star:[code](https://github.com/zya3d/Awesome-3D-Occupancy-Prediction)
[2024-05-07]
* [A Survey on Occupancy Perception for Autonomous Driving: The Information Fusion Perspective](https://arxiv.org/abs/2405.05173)
:star:[code](https://github.com/HuaiyuanXu/3D-Occupancy-Perception)
[2024-05-09]
* [Cooperative Visual-LiDAR Extrinsic Calibration Technology for Intersection Vehicle-Infrastructure: A review](https://arxiv.org/abs/2405.10132)
[2024-05-17]
* [Collective Perception Datasets for Autonomous Driving: A Comprehensive Review](https://arxiv.org/abs/2405.16973)
[2024-05-28]
* [Panoptic Perception for Autonomous Driving: A Survey](https://arxiv.org/abs/2408.15388)
[2024-08-29]
* [Feature Importance in Pedestrian Intention Prediction: A Context-Aware Review](https://arxiv.org/abs/2409.07645)
[2024-09-13]
* 目标检测
* [Robustness-Aware 3D Object Detection in Autonomous Driving: A Review and Outlook](https://arxiv.org/abs/2401.06542)
[2024-01-15]
* [Deep Event-based Object Detection in Autonomous Driving: A Survey](https://arxiv.org/abs/2405.03995)
[2024-05-08]
* [A Comprehensive Review of 3D Object Detection in Autonomous Driving: Technological Advances and Future Directions](https://arxiv.org/abs/2408.16530)
:star:[code](https://github.com/Fishsoup0/Autonomous-Driving-Perception)
[2024-08-30]
* 车辆重识别
* [A Comprehensive Survey on Deep-Learning-based Vehicle Re-Identification: Models, Data Sets and Challenges](https://arxiv.org/abs/2401.10643)
[2024-01-22]
* 疲劳驾驶检测
* [A Survey on Drowsiness Detection -- Modern Applications and Methods](https://arxiv.org/abs/2408.12990)
[2024-08-26]## Tamper Detection/image forencis detection(图像篡改检测方向)
* [Datasets, Clues and State-of-the-Arts for Multimedia Forensics: An Extensive Review](https://arxiv.org/abs/2401.06999)
[2024-01-17]## Neural Rendering(神经渲染)
* [Neural Rendering and Its Hardware Acceleration: A Review](https://arxiv.org/abs/2402.00028)
[2024-02-02]## Neural Radiance Fields
* [Semantically-aware Neural Radiance Fields for Visual Scene Understanding: A Comprehensive Review](https://arxiv.org/abs/2402.11141)
[2024-02-20]## Visual Question Answering
* [Assistive Image Annotation Systems with Deep Learning and Natural Language Capabilities: A Review](https://arxiv.org/abs/2407.00252)
[2024-07-02]## Vision language(视觉语言)
* [A Survey on Hallucination in Large Vision-Language Models](https://arxiv.org/abs/2402.00253)
[2024-02-02]
* [Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions](https://arxiv.org/abs/2404.07214)
[2024-04-12]
* [A Survey on Visual Mamba](https://export.arxiv.org/abs/2404.15956)
[2024-04-25]
* [Vision Mamba: A Comprehensive Survey and Taxonomy](https://arxiv.org/abs/2405.04404)
:star:[code](https://github.com/lx6c78/Vision-Mamba-A-Comprehensive-Survey-and-Taxonomy)
[2024-05-08]
* [A Survey on Vision-Language-Action Models for Embodied AI](https://arxiv.org/abs/2405.14093)
[2024-05-24]
* [JailbreakZoo: Survey, Landscapes, and Horizons in Jailbreaking Large Language and Vision-Language Models](https://export.arxiv.org/abs/2407.01599)
:house:[project](https://chonghan-chen.com/llm-jailbreak-zoo-survey/)
[2024-07-03]
* [Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models](https://arxiv.org/abs/2408.02085)
:star:[code](https://github.com/yuleiqin/fantastic-data-engineering)
[2024-08-06]
* [Preference Tuning with Human Feedback on Language, Speech, and Vision Tasks: A Survey](https://arxiv.org/abs/2409.11564)
[2024-09-19]
* [One missing piece in Vision and Language: A Survey on Comics Understanding](https://arxiv.org/abs/2409.09502)
:star:[code](https://github.com/emanuelevivoli/awesome-comics-understanding)
[2024-09-17]
* [A Survey of Low-shot Vision-Language Model Adaptation via Representer Theorem](https://arxiv.org/abs/2410.11686)
[2024-10-16]
* 基础模型
* [Few-shot Adaptation of Multi-modal Foundation Models: A Survey](https://arxiv.org/abs/2401.01736)
[2024-01-04]
* [Unveiling Hallucination in Text, Image, Video, and Audio Foundation Models: A Comprehensive Review](https://arxiv.org/abs/2405.09589)
[2024-05-17]
* [Towards Vision-Language Geo-Foundation Model: A Survey](https://arxiv.org/abs/2406.09385)
:star:[code](https://github.com/zytx121/Awesome-VLGFM)
[2024-06-14]
* [Towards Unifying Understanding and Generation in the Era of Vision Foundation Models: A Survey from the Autoregression Perspective](https://arxiv.org/abs/2410.22217)
:star:[code](https://github.com/EmmaSRH/ARVFM)
[2024-10-30]
* MLLM
* [The (R)Evolution of Multimodal Large Language Models: A Survey](https://arxiv.org/abs/2402.12451)
[2024-02-21]
* [Efficient Multimodal Large Language Models: A Survey](https://arxiv.org/abs/2405.10739)
:star:[code](https://github.com/lijiannuist/Efficient-Multimodal-LLMs-Survey)
[2024-05-20]
* [A Survey of Multimodal Large Language Model from A Data-centric Perspective](https://arxiv.org/abs/2405.16640)
[2024-05-28]
* [The Synergy between Data and Multi-Modal Large Language Models: A Survey from Co-Development Perspective](https://arxiv.org/abs/2407.08583)
:star:[code](https://github.com/modelscope/data-juicer/blob/main/docs/awesome_llm_data.md)
[2024-07-12]
* [A Survey on Benchmarks of Multimodal Large Language Models](https://arxiv.org/abs/2408.08632)
:star:[code](https://github.com/swordlidev/Evaluation-Multimodal-LLMs-Survey)
[2024-08-19]
* [Visual Prompting in Multimodal Large Language Models: A Survey](https://arxiv.org/abs/2409.15310)
[2024-09-25]
* VLN
* [Vision-Language Navigation with Embodied Intelligence: A Survey](https://arxiv.org/abs/2402.14304)
[2024-02-23]
* [Vision-and-Language Navigation Today and Tomorrow: A Survey in the Era of Foundation Models](https://arxiv.org/abs/2407.07035)
[2024-07-10]
* [A Survey on Evaluation of Multimodal Large Language Models](https://arxiv.org/abs/2408.15769)
[2024-08-29]
* LLM
* [Large Multimodal Agents: A Survey](https://arxiv.org/abs/2402.15116)
:star:[code](https://github.com/jun0wanan/awesome-large-multimodal-agents)
[2024-02-26]
* [Unbridled Icarus: A Survey of the Potential Perils of Image Inputs in Multimodal Large Language Model Security](https://arxiv.org/abs/2404.05264)
[2024-04-09]
* [Hallucination of Multimodal Large Language Models: A Survey](https://arxiv.org/abs/2404.18930)
:star:[code](https://github.com/showlab/Awesome-MLLM-Hallucination)
[2024-04-30]
* [Multi-Modal and Multi-Agent Systems Meet Rationality: A Survey](https://arxiv.org/abs/2406.00252)
:star:[code](https://github.com/bowen-upenn/MMMA_Rationality)
[2024-06-04]
* [A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends](https://arxiv.org/abs/2407.07403)
:star:[code](https://github.com/liudaizong/Awesome-LVLM-Attack)
[2024-07-11]
* [Grounding and Evaluation for Large Language Models: Practical Challenges and Lessons Learned (Survey)](https://arxiv.org/abs/2407.12858)
[2024-07-19]
* [Knowledge Mechanisms in Large Language Models: A Survey and Perspective](https://arxiv.org/abs/2407.15017)
[2024-07-23]
* [Harnessing Large Vision and Language Models in Agriculture: A Review](https://arxiv.org/abs/2407.19679)
[2024-07-30]
* [The Role of Language Models in Modern Healthcare: A Comprehensive Review](https://arxiv.org/abs/2409.16860)
[2024-09-26]
* [FTII-Bench: A Comprehensive Multimodal Benchmark for Flow Text with Image Insertion](https://arxiv.org/abs/2410.12564)
:star:[code](https://github.com/IAAR-Shanghai/FTIIBench)
[2024-10-17]
* [Survey of Cultural Awareness in Language Models: Text and Beyond](https://arxiv.org/abs/2411.00860)
[2024-11-05]
* 多模态
* [A Comprehensive Survey on Deep Multimodal Learning with Missing Modality](https://arxiv.org/abs/2409.07825)
[2024-09-13]## Vision Transformer
* [Exploring the Synergies of Hybrid CNNs and ViTs Architectures for Computer Vision: A survey](https://arxiv.org/abs/2402.02941)
[2024-02-06]
* [Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges](https://export.arxiv.org/abs/2404.16112)
:star:[code](https://github.com/badripatro/mamba360)
[2024-04-26]
* [A Comparative Survey of Vision Transformers for Feature Extraction in Texture Analysis](https://arxiv.org/abs/2406.06136)
[2024-06-11]
* [A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships](https://arxiv.org/abs/2408.15178)
[2024-08-28]## Style Transfer(风格迁移)
* [Evaluation in Neural Style Transfer: A Review](https://arxiv.org/abs/2401.17109)
[2024-01-31]## Image Matching(图像匹配)
* [Local Feature Matching Using Deep Learning: A Survey](https://arxiv.org/abs/2401.17592)
[2024-02-01]## Point Cloud(点云)
* [A Comprehensive Survey and Taxonomy on Point Cloud Registration Based on Deep Learning](https://export.arxiv.org/abs/2404.13830)
:star:[code](https://github.com/yxzhang15/PCR.)
[2024-04-23]
* [Advancing 3D Point Cloud Understanding through Deep Transfer Learning: A Comprehensive Survey](https://arxiv.org/abs/2407.17877)
[2024-07-26]
* [Deep Learning for 3D Point Cloud Enhancement: A Survey](https://arxiv.org/abs/2411.00857)
[2024-11-05]## MC/KD/Pruning(模型压缩/知识蒸馏/剪枝)
* [Computer Vision Model Compression Techniques for Embedded Systems: A Survey](https://arxiv.org/abs/2408.08250)
:star:[code](https://github.com/venturusbr/cv-model-compression)
[2024-08-16]
* [Adversarial Pruning: A Survey and Benchmark of Pruning Methods for Adversarial Robustness](https://arxiv.org/abs/2409.01249)
:star:[code](https://github.com/pralab/AdversarialPruningBenchmark)
[2024-09-04]
* [Model Compression Techniques in Biometrics Applications: A Survey](https://arxiv.org/abs/2401.10139)
[2024-01-19]
* KD
* [A Comprehensive Review of Knowledge Distillation in Computer Vision](https://arxiv.org/abs/2404.00936)
[2024-04-02]## OCR
* [Transformers and Language Models in Form Understanding: A Comprehensive Review of Scanned Document Analysis](https://arxiv.org/abs/2403.04080)
[2024-03-08]
* [A short review on graphonometric evaluation tools in children.](https://arxiv.org/abs/2406.04818)
[2024-06-11]
* 文本图像处理
* [Visual Text Meets Low-level Vision: A Comprehensive Survey on Visual Text Processing](https://arxiv.org/abs/2402.03082)
:star:[code](https://github.com/shuyansy/Survey-of-Visual-Text-Processing)
[2024-02-06]
* 图表理解
* [From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models](https://arxiv.org/abs/2403.12027)
[2024-03-19]
* 文档理解
* [Deep Learning based Visually Rich Document Content Understanding: A Survey](https://arxiv.org/abs/2408.01287)
[2024-08-05]
* 文本识别
* [Self-Supervised Learning for Text Recognition: A Critical Survey](https://arxiv.org/abs/2407.19889)
[2024-07-30]
* 手写识别
* [An inclusive review on deep learning techniques and their scope in handwriting recognition](https://arxiv.org/abs/2404.08011)
[2024-04-15]
* [A Perspective Analysis of Handwritten Signature Technology](https://arxiv.org/abs/2405.13555)
[2024-05-24]
* 表格理解
* [Transformers Utilization in Chart Understanding: A Review of Recent Advances & Future Trends](https://arxiv.org/abs/2410.13883)
[2024-10-21]## Generation
* [Video Diffusion Models: A Survey](https://arxiv.org/abs/2405.03150)
:star:[code](https://github.com/ndrwmlnk/Awesome-Video-Diffusion-Models)
[2024-05-07]
* [Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond](https://arxiv.org/abs/2405.03520)
:star:[code](https://github.com/GigaAI-research/General-World-Models-Survey)
[2024-05-07]
* [Survey on Visual Signal Coding and Processing with Generative Models: Technologies, Standards and Optimization](https://arxiv.org/abs/2405.14221)
[2024-05-24]
* [LLMs Meet Multimodal Generation and Editing: A Survey](https://arxiv.org/abs/2405.19334)
:star:[code](https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation)
[2024-05-30]
* [Diffusion Models and Representation Learning: A Survey](https://arxiv.org/abs/2407.00783)
:star:[code](https://github.com/dongzhuoyao/Diffusion-Representation-Learning-Survey-Taxonomy)
[2024-07-02]
* [Replication in Visual Diffusion Models: A Survey and Outlook](https://arxiv.org/abs/2408.00001)
:star:[code](https://github.com/WangWenhao0716/Awesome-Diffusion-Replication)
[2024-08-02]
* [A Comprehensive Survey on Synthetic Infrared Image synthesis](https://arxiv.org/abs/2408.06868)
[2024-08-14]
* [Diffusion-Based Visual Art Creation: A Survey and New Perspectives](https://arxiv.org/abs/2408.12128)
[2024-08-23]
* 文本-图像生成
* [Text-to-Image Cross-Modal Generation: A Systematic Review](https://arxiv.org/abs/2401.11631)
[2024-01-23]
* [Controllable Generation with Text-to-Image Diffusion Models: A Survey](https://arxiv.org/abs/2403.04279)
:star:[code](https://github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models)
[2024-03-08]
* [Evaluating Text to Image Synthesis: Survey and Taxonomy of Image Quality Metrics](https://arxiv.org/abs/2403.11821)
[2024-03-19]
* [Survey of Bias In Text-to-Image Generation: Definition, Evaluation, and Mitigation](https://arxiv.org/abs/2404.01030)
[2024-04-02]
* [Theoretical research on generative diffusion models: an overview](https://arxiv.org/abs/2404.09016)
[2024-04-16]
* [Exploring Feedback Generation in Automated Skeletal Movement Assessment: A Comprehensive Overview](https://arxiv.org/abs/2404.09359)
[2024-04-16]
* [Adversarial Attacks and Defenses on Text-to-Image Diffusion Models: A Survey](https://arxiv.org/abs/2407.15861)
:star:[code](https://github.com/datar001/Awesome-AD-on-T2IDM)
[2024-07-24]
* 内容生成
* [A Survey on Personalized Content Synthesis with Diffusion Models](https://arxiv.org/abs/2405.05538)
[2024-05-10]
* 文本-3D
* [A Survey On Text-to-3D Contents Generation In The Wild](https://arxiv.org/abs/2405.09431)
[2024-05-16]
* 3D 内容生成
* [A Comprehensive Survey on 3D Content Generation](https://arxiv.org/abs/2402.01166)
[2024-02-05]
* AIGC
* [Generative Visual Compression: A Review](https://arxiv.org/abs/2402.02140)
[2024-02-06]
* [Generative AI in Vision: A Survey on Models, Metrics and Applications](https://arxiv.org/abs/2402.16369)
[2024-02-27]
* [Retrieval-Augmented Generation for AI-Generated Content: A Survey](https://arxiv.org/abs/2402.19473)
:star:[code](https://github.com/hymie122/RAG-Survey)
[2024-01-01]
* [A Survey of Defenses against AI-generated Visual Media: Detection, Disruption, and Authentication](https://arxiv.org/abs/2407.10575)
[2024-07-16]
* 图像编辑
* [Diffusion Model-Based Image Editing: A Survey](https://arxiv.org/abs/2402.17525)
:star:[code](https://github.com/SiatMMLab/Awesome-Diffusion-Model-Based-Image-Editing-Methods)
[2024-02-28]
* [A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models](https://arxiv.org/abs/2406.14555)
:star:[code](https://github.com/xinchengshuai/Awesome-Image-Editing)
[2024-06-21]
* 文本-视频
* [Sora: A Review on Background, Technology, Limitations, and Opportunities of Large Vision Models](https://arxiv.org/abs/2402.17177)
:star:[code](https://github.com/lichao-sun/SoraReview)
[2024-02-28]
* [Sora as an AGI World Model? A Complete Survey on Text-to-Video Generation](https://arxiv.org/abs/2403.05131)
[2024-03-11]
* [From Sora What We Can See: A Survey of Text-to-Video Generation](https://arxiv.org/abs/2405.10674)
:star:[code](https://github.com/soraw-ai/Awesome-Text-to-Video-Generation)
[2024-05-20]
* 视频生成
* [A Survey on Long Video Generation: Challenges, Methods, and Prospects](https://arxiv.org/abs/2403.16407)
[2024-03-26]
* [A Comprehensive Survey on Human Video Generation: Challenges, Methods, and Insights](https://arxiv.org/abs/2407.08428)
[2024-07-12]
* [A Survey of AI-Generated Video Evaluation](https://arxiv.org/abs/2410.19884)
[2024-10-29]
* 视频编辑
* [Diffusion Model-Based Video Editing: A Survey](https://arxiv.org/abs/2407.07111)
:star:[code](https://github.com/wenhao728/awesome-diffusion-v2v)
[2024-07-11]
* GAN
* [Synthesizing Iris Images using Generative Adversarial Networks: Survey and Comparative Analysis](https://export.arxiv.org/abs/2404.17105)
[2024-04-29]合成虹膜图像
* [A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective, Direction and Open Research Scopes](https://arxiv.org/abs/2407.08839)
[2024-07-15]
* 街景视角合成
* [Bird's-Eye View to Street-View: A Survey](https://arxiv.org/abs/2405.08961)
[2024-05-16]
* 人体情感识别
* [Generative Technology for Human Emotion Recognition: A Scope Review](https://arxiv.org/abs/2407.03640)
[2024-07-08]
* [Sensing technologies and machine learning methods for emotion recognition in autism: Systematic review](https://arxiv.org/abs/2407.04712)
[2024-07-09]
* [Survey on Emotion Recognition through Posture Detection and the possibility of its application in Virtual Reality](https://arxiv.org/abs/2408.01728)
[2024-08-06]
* 艺术字生成
* [Intelligent Artistic Typography: A Comprehensive Review of Artistic Text Design and Generation](https://arxiv.org/abs/2407.14774)
:star:[code](https://github.com/williamyang1991/Awesome-Artistic-Typography/)
[2024-07-23]
* 扩撒
* [A Comprehensive Survey on Diffusion Models and Their Applications](https://arxiv.org/abs/2408.10207)
[2024-08-21]
* [Alignment of Diffusion Models: Fundamentals, Challenges, and Future](https://arxiv.org/abs/2409.07253)
[2024-09-12]
* [A Survey on Diffusion Models for Inverse Problems](https://arxiv.org/abs/2410.00083)
[2024-10-02]
* [Efficient Diffusion Models: A Comprehensive Survey from Principles to Practices](https://arxiv.org/abs/2410.11795)
:star:[code](https://github.com/ponyzym/Efficient-DMs-Survey)
[2024-10-16]## Biometrics(生物特征识别)
* [Deep Learning Techniques for Hand Vein Biometrics: A Comprehensive Review](https://arxiv.org/abs/2409.07128)
[2024-09-12]## Reid/Pedestrian Detection(行人/重识别检测)
* Reid
* [A Survey on 3D Skeleton Based Person Re-Identification: Approaches, Designs, Challenges, and Future Directions](https://arxiv.org/abs/2401.15296)
:star:[code](https://github.com/Kali-Hac/3D-skeleton-based-person-re-ID-survey)
[2024-01-30]
* 基于文本-重识别
* [From Attributes to Natural Language: A Survey and Foresight on Text-based Person Re-identification](https://arxiv.org/abs/2408.00096)
[2024-08-02]
* 行人检测
* [Pedestrian Detection in Low-Light Conditions: A Comprehensive Survey](https://arxiv.org/abs/2401.07801)
[2024-01-17]
* [Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey](https://arxiv.org/abs/2407.04277)
[2024-07-08]## Human Action Recognition(人体动作识别)
* [Body-Area Capacitive or Electric Field Sensing for Human Activity Recognition and Human-Computer Interaction: A Comprehensive Survey](https://arxiv.org/abs/2401.06000)
[2024-01-12]
* [A Survey of IMU Based Cross-Modal Transfer Learning in Human Activity Recognition](https://arxiv.org/abs/2403.15444)
[2024-03-26]
* [A Survey on Backbones for Deep Video Action Recognition](https://arxiv.org/abs/2405.05584)
[2024-05-10]
* [From CNNs to Transformers in Multimodal Human Action Recognition: A Survey](https://arxiv.org/abs/2405.15813)
[2024-05-28]
* [Self-Supervised Skeleton Action Representation Learning: A Benchmark and Beyond](https://arxiv.org/abs/2406.02978)
[2024-06-06]
* [RNNs, CNNs and Transformers in Human Action Recognition: A Survey and A Hybrid Model](https://arxiv.org/abs/2407.06162)
[2024-07-09]
* [A Comprehensive Review of Few-shot Action Recognition](https://arxiv.org/abs/2407.14744)
[2024-07-23]
* [A Critical Analysis on Machine Learning Techniques for Video-based Human Activity Recognition of Surveillance Systems: A Review](https://arxiv.org/abs/2409.00731)
[2024-09-04]
* [A Comprehensive Methodological Survey of Human Activity Recognition Across Divers Data Modalities](https://arxiv.org/abs/2409.09678)
[2024-09-17]
* [Human Action Anticipation: A Survey](https://arxiv.org/abs/2410.14045)
[2024-10-21]
* [Exocentric To Egocentric Transfer For Action Recognition: A Short Survey](https://arxiv.org/abs/2410.20621)
[2024-10-29]
* 跌倒检测
* [Deep Learning for Computer Vision based Activity Recognition and Fall Detection of the Elderly: a Systematic Review](https://arxiv.org/abs/2401.11790)
[2024-01-23]## Human Pose Estimation(人体姿态估计)
* [In-Bed Pose Estimation: A Review](https://arxiv.org/abs/2402.00700)
[2024-02-02]
* [Survey of 3D Human Body Pose and Shape Estimation Methods for Contemporary Dance Applications](https://arxiv.org/abs/2401.02383)
[2024-01-05]
* [Deep Learning for 3D Human Pose Estimation and Mesh Recovery: A Survey](https://arxiv.org/abs/2402.18844)
:star:[code](https://github.com/liuyangme/SOTA-3DHPE-HMR)
[2024-03-01]
* [A Survey on 3D Egocentric Human Pose Estimation](https://arxiv.org/abs/2403.17893)
[2024-03-27]
* [Human Modelling and Pose Estimation Overview](https://arxiv.org/pdf/2406.19290)
[2024-06-28]
* [Markerless Multi-view 3D Human Pose Estimation: a survey](https://arxiv.org/abs/2407.03817)
[2024-07-08]
* 三维人体
* [A Survey on 3D Human Avatar Modeling -- From Reconstruction to Generation](https://arxiv.org/abs/2406.04253)
[2024-06-07]
* 手势合成
* [A Methodological and Structural Review of Hand Gesture Recognition Across Diverse Data Modalities](https://arxiv.org/abs/2408.05436)
[2024-08-13]
* 手语翻译
* [From Rule-Based Models to Deep Learning Transformers Architectures for Natural Language Processing and Sign Language Translation Systems: Survey, Taxonomy and Performance Evaluation](https://arxiv.org/abs/2408.14825)
[2024-08-28]## Video
* [Deep video representation learning: a survey](https://arxiv.org/abs/2405.06574)
[2024-05-13]
* [Segment Anything for Videos: A Systematic Survey](https://arxiv.org/abs/2408.08315)
:star:[code](https://github.com/983632847/SAM-for-Videos)
[2024-08-19]
* 视频摘要
* [Video Summarization Techniques: A Comprehensive Review](https://arxiv.org/abs/2410.04449)
[2024-10-08]
* 视频理解
* [Video Understanding with Large Language Models: A Survey](https://arxiv.org/abs/2312.17432)
:star:[code](https://github.com/yunlong10/Awesome-LLMs-for-Video-Understanding)
[2024-01-01]
* [A Survey on Generative AI and LLM for Video Generation, Understanding, and Streaming](https://export.arxiv.org/abs/2404.16038)
[2024-04-26]
* [Foundation Models for Video Understanding: A Survey](https://arxiv.org/abs/2405.03770)
:star:[code](https://github.com/NeeluMadan/ViFM_Survey.git)
[2024-05-08]
* [A Survey of Video Datasets for Grounded Event Understanding](https://arxiv.org/abs/2406.09646)
[2024-06-17]
* [From Seconds to Hours: Reviewing MultiModal Large Language Models on Comprehensive Long Video Understanding](https://export.arxiv.org/abs/2409.18938)
[2024-09-30]
* 视频预测
* [A Survey on Video Prediction: From Deterministic to Generative Approaches](https://arxiv.org/abs/2401.14718)
[2024-01-29]
* 视频制作
* [Reviewing Intelligent Cinematography: AI research for camera-based video production](https://arxiv.org/abs/2405.05039)
[2024-05-09]
* 视频异常检测
* [Networking Systems for Video Anomaly Detection: A Tutorial and Survey](https://arxiv.org/abs/2405.10347)
:star:[code](https://github.com/fdjingliu/NSVAD)
[2024-05-20]
* [Video Anomaly Detection in 10 Years: A Survey and Outlook](https://arxiv.org/abs/2405.19387)
[2024-05-31]
* [Deep Learning for Video Anomaly Detection: A Review](https://arxiv.org/abs/2409.05383)
[2024-09-10]## Object Tracking(目标跟踪)
* [Beyond Traditional Single Object Tracking: A Survey](https://arxiv.org/abs/2405.10439)
[2024-05-20]
* [The Progression of Transformers from Language to Vision to MOT: A Literature Review on Multi-Object Tracking with Transformers](https://export.arxiv.org/abs/2406.16784)
[2024-06-25]
* 多模态目标跟踪
* [Awesome Multi-modal Object Tracking](https://arxiv.org/abs/2405.14200)
:star:[code](https://github.com/983632847/Awesome-Multimodal-Object-Tracking)
[2024-05-24]## Object Detection(目标检测)
* [Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review](https://arxiv.org/abs/2401.10379)
[2024-01-22]
* [YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain](https://arxiv.org/abs/2406.10139)
[2024-06-17]
* [YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once Series](https://arxiv.org/abs/2406.19407)
[2024-07-01]
* [Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer](https://arxiv.org/abs/2407.08460)
[2024-07-12]
* [A Survey and Evaluation of Adversarial Attacks for Object Detection](https://arxiv.org/abs/2408.01934)
[2024-08-06]
* [Surveying You Only Look Once (YOLO) Multispectral Object Detection Advancements, Applications And Challenges](https://arxiv.org/abs/2409.12977)
[2024-09-23]
* [Advancing Object Detection in Transportation with Multimodal Large Language Models (MLLMs): A Comprehensive Review and Empirical Testing](https://export.arxiv.org/ftp/arxiv/papers/2409/2409.18286.pdf)
[2024-09-30]
* [Radar and Camera Fusion for Object Detection and Tracking: A Comprehensive Survey](https://arxiv.org/abs/2410.19872)
[2024-10-29]
* 真实世界目标检测
* [Self-Supervised Learning for Real-World Object Detection: a Survey](https://arxiv.org/abs/2410.07442)
[2024-10-11]
* 开发世界目标检测
* [Open World Object Detection: A Survey](https://arxiv.org/abs/2410.11301)
:star:[code](https://github.com/ArminLee/OWOD)
[2024-10-16]
* 小样本目标检测
* [Beyond Few-shot Object Detection: A Detailed Survey](https://arxiv.org/abs/2408.14249)
[2024-08-27]
* 伪装目标检测
* [A Survey of Camouflaged Object Detection and Beyond](https://arxiv.org/abs/2408.14562)
:star:[code](https://github.com/ChunmingHe/awesome-concealed-object-segmentation)
[2024-08-28]
* 海洋垃圾检测
* [State of the art applications of deep learning within tracking and detecting marine debris: A survey](https://arxiv.org/abs/2403.18067)
[2024-03-28]
* 3D目标识别
* [Deep Models for Multi-View 3D Object Recognition: A Review](https://export.arxiv.org/abs/2404.15224)
[2024-04-24]无PDF
* [A Survey of Deep Learning Based Radar and Vision Fusion for 3D Object Detection in Autonomous Driving](https://arxiv.org/abs/2406.00714)
[2024-06-04]
* 阴影检测
* [Unveiling Deep Shadows: A Survey on Image and Video Shadow Detection, Removal, and Generation in the Era of Deep Learning](https://arxiv.org/abs/2409.02108)
:star:[code](https://github.com/xw-hu/Unveiling-Deep-Shadows)
[2024-09-04]
* 目标发现
* [Unsupervised Object Discovery: A Comprehensive Survey and Unified Taxonomy](https://arxiv.org/abs/2411.00868)
[2024-11-05]## UAV/Remote Sensing/Satellite Image(无人机/遥感/卫星图像)
* [Image Fusion in Remote Sensing: An Overview and Meta Analysis](https://arxiv.org/abs/2401.08837)
[2024-01-18]
* [UAV-borne Mapping Algorithms for Canopy-Level and High-Speed Drone Applications](https://arxiv.org/abs/2401.06407)
[2024-01-15]
* [Solid Waste Detection in Remote Sensing Images: A Survey](https://arxiv.org/abs/2402.09066)
[2024-02-15]
* [A Comprehensive Review on Computer Vision Analysis of Aerial Data](https://arxiv.org/abs/2402.09781)
[2024-02-16]
* [Deep Learning for Satellite Image Time Series Analysis: A Review](https://arxiv.org/abs/2404.03936)
[2024-04-08]
* [A Review on Machine Learning Algorithms for Dust Aerosol Detection using Satellite Data](https://arxiv.org/abs/2404.09415)
[2024-04-16]
* [Sugarcane Health Monitoring With Satellite Spectroscopy and Machine Learning: A Review](https://arxiv.org/abs/2404.16844)
[2024-04-29]利用卫星光谱和机器学习监测甘蔗健康
* [Wildfire Risk Prediction: A Review](https://arxiv.org/abs/2405.01607)
[2024-05-06]
* [Dehazing Remote Sensing and UAV Imagery: A Review of Deep Learning, Prior-based, and Hybrid Approaches](https://arxiv.org/abs/2405.07520)
[2024-05-14]
* [Visual place recognition for aerial imagery: A survey](https://arxiv.org/abs/2406.00885)
:star:[code](https://github.com/prime-slam/aero-vloc)
[2024-06-04]
* [Deep Learning for Slum Mapping in Remote Sensing Images: A Meta-analysis and Review](https://arxiv.org/abs/2406.08031)
[2024-06-13]
* [Hyperspectral Pansharpening: Critical Review, Tools and Future Perspectives](https://arxiv.org/abs/2407.01355)
:star:[code](https://github.com/matciotola/hyperspectral_pansharpening_toolbox)
[2024-07-02]
* [AI Foundation Models in Remote Sensing: A Survey](https://arxiv.org/abs/2408.03464)
[2024-08-08]
* [Applications of Knowledge Distillation in Remote Sensing: A Survey](https://arxiv.org/abs/2409.12111)
[2024-09-19]
* [Foundation Models for Remote Sensing and Earth Observation: A Survey](https://arxiv.org/abs/2410.16602)
[2024-10-23]
* 交叉视角地理定位
* [Cross-view geo-localization: a survey](https://arxiv.org/abs/2406.09722)
[2024-06-17]
* 航空航天
* [Computer vision tasks for intelligent aerospace missions: An overview](https://arxiv.org/abs/2407.06513)
[2024-07-10]
* 船舶轨迹预测
* [A Survey of Distance-Based Vessel Trajectory Clustering: Data Pre-processing, Methodologies, Applications, and Experimental Evaluation](https://arxiv.org/abs/2407.11084)
[2024-07-17]
* 野生动物监测
* [Systematic Literature Review of Vision-Based Approaches to Outdoor Livestock Monitoring with Lessons from Wildlife Studies](https://arxiv.org/pdf/2410.05041)
[2024-10-08]
* 变化检测
* [Exploring Foundation Models in Remote Sensing Image Change Detection: A Comprehensive Survey](https://arxiv.org/abs/2410.07824)
[2024-10-11]## Medical Image Progress
* [Empowering Medical Imaging with Artificial Intelligence: A Review of Machine Learning Approaches for the Detection, and Segmentation of COVID-19 Using Radiographic and Tomographic Images](https://arxiv.org/abs/2401.07020)
[2024-01-17]
* [Advancing Low-Rank and Local Low-Rank Matrix Approximation in Medical Imaging: A Systematic Literature Review and Future Directions](https://arxiv.org/abs/2402.14045)
[2024-02-23]
* [When Eye-Tracking Meets Machine Learning: A Systematic Review on Applications in Medical Image Analysis](https://arxiv.org/abs/2403.07834)
[2024-03-33]
* [Out-of-distribution Detection in Medical Image Analysis: A survey](https://arxiv.org/abs/2404.18279)
[2024-04-30]
* [Development of Skip Connection in Deep Neural Networks for Computer Vision and Medical Image Analysis: A Survey](https://arxiv.org/abs/2405.01725)
:star:[code](https://github.com/apple1986/Residual_Learning_For_Images)
[2024-05-06]
* [Continual Learning in Medical Imaging from Theory to Practice: A Survey and Practical Analysis](https://arxiv.org/abs/2405.13482)
[2024-05-24]
* [Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis](https://arxiv.org/abs/2406.03430)
:star:[code](https://github.com/xmindflow/Awesome_mamba)
[2024-06-06]
* [Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey](https://arxiv.org/abs/2406.11445)
[2024-06-18]
* [A Comprehensive Survey of Foundation Models in Medicine](https://arxiv.org/abs/2406.10729)
[2024-06-18]
* [Review of Zero-Shot and Few-Shot AI Algorithms in The Medical Domain](https://export.arxiv.org/abs/2406.16143)
[2024-06-25]
* [Applications of interpretable deep learning in neuroimaging: a comprehensive review](https://arxiv.org/abs/2406.17792)
[2024-06-27]
* [Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation](https://arxiv.org/abs/2406.18249)
[2024-06-27]
* [A Review of Image Processing Methods in Prostate Ultrasound](https://arxiv.org/abs/2407.00678)
[2024-07-02]
* [Physics-Inspired Generative Models in Medical Imaging: A Review](https://arxiv.org/abs/2407.10856)
[2024-07-16]
* [Integrating Deep Learning in Cardiology: A Comprehensive Review of Atrial Fibrillation, Left Atrial Scar Segmentation, and the Frontiers of State-of-the-Art Techniques](https://arxiv.org/abs/2407.09561)
[2024-07-16]
* [A Survey on Trustworthiness in Foundation Models for Medical Image Analysis](https://arxiv.org/abs/2407.15851)
[2024-07-24]
* [PINNs for Medical Image Analysis: A Survey](https://arxiv.org/abs/2408.01026)
[2024-08-05]
* [Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review](https://arxiv.org/abs/2409.16340)
:star:[code](https://github.com/Niko-k98/Awesome-list-Federated-Learning-Review/tree/main)
[2024-09-26]
* [Artificial intelligence techniques in inherited retinal diseases: A review](https://arxiv.org/abs/2410.09105)
[2024-10-15]
* [Medical AI for Early Detection of Lung Cancer: A Survey](https://arxiv.org/abs/2410.14769)
:star:[code](https://github.com/CaiGuoHui123/Awesome-Lung-Cancer-Detection)
[2024-10-22]
* [Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in Review](https://arxiv.org/abs/2410.19820)
[2024-10-29]
* [Multiplex Imaging Analysis in Pathology: a Comprehensive Review on Analytical Approaches and Digital Toolkits](https://arxiv.org/abs/2411.00948)
[2024-11-05]
* 息肉分割
* [Colorectal Polyp Segmentation in the Deep Learning Era: A Comprehensive Survey](https://arxiv.org/abs/2401.11734)
[2024-01-23]
* [Artificial Intelligence in Gastrointestinal Bleeding Analysis for Video Capsule Endoscopy: Insights, Innovations, and Prospects (2008-2023)](https://arxiv.org/abs/2409.00639)
[2024-09-04]
* [A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology](https://arxiv.org/abs/2409.04615)
[2024-09-10]
* [The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology](https://arxiv.org/abs/2409.12973)
[2024-09-23]
* 生物医学图像分割
* [Foundation Models for Biomedical Image Segmentation: A Survey](https://arxiv.org/abs/2401.07654)
[2024-01-17]
* [Biomedical Image Segmentation: A Systematic Literature Review of Deep Learning Based Object Detection Methods](https://arxiv.org/abs/2408.03393)
[2024-08-08]
* 微创外科视觉
* [Multitask Learning in Minimally Invasive Surgical Vision: A Review](https://arxiv.org/abs/2401.08256)
[2024-01-17]
* 牙科 X 射线成像分割
* [Exploring the Role of Convolutional Neural Networks (CNN) in Dental Radiography Segmentation: A Comprehensive Systematic Literature Review](https://arxiv.org/abs/2401.09190)
[2024-01-18]
* 胶质瘤组织切片分析
* [Machine learning-based analysis of glioma tissue sections: a review](https://arxiv.org/abs/2401.15022)
[2024-01-29]
* 手术
* [Enhancing Surgical Performance in Cardiothoracic Surgery with Innovations from Computer Vision and Artificial Intelligence: A Narrative Review](https://arxiv.org/abs/2402.11288)
[2024-02-20]
* [Deep Learning for Surgical Instrument Recognition and Segmentation in Robotic-Assisted Surgeries: A Systematic Review](https://arxiv.org/abs/2410.07269)
[2024-10-11]
* 人工耳蜗
* [Advanced Artificial Intelligence Algorithms in Cochlear Implants: Review of Healthcare Strategies, Challenges, and Perspectives](https://arxiv.org/abs/2403.15442)
[2024-03-26]
* 医学图像配准
* [Medical Image Registration and Its Application in Retinal Images: A Review](https://arxiv.org/abs/2403.16502)
[2024-03-26]
* stroke segmentation
* [Transformers-based architectures for stroke segmentation: A review](https://arxiv.org/abs/2403.18637)
[2024-03-28]
* CT
* [Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review](https://arxiv.org/abs/2403.18565)
[2024-03-28]
* 医学图像分类
* [A review of deep learning-based information fusion techniques for multimodal medical image classification](https://export.arxiv.org/abs/2404.15022)
[2024-04-24]
* 医学图像分割
* [Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey](https://arxiv.org/abs/2405.01636)
[2024-05-06]
* [AI-based Automatic Segmentation of Prostate on Multi-modality Images: A Review](https://arxiv.org/abs/2407.06612)
[2024-07-10]
* [Deep Learning for Pancreas Segmentation: a Systematic Review](https://arxiv.org/abs/2407.16313)
[2024-07-24]
* [A Short Review and Evaluation of SAM2's Performance in 3D CT Image Segmentation](https://arxiv.org/abs/2408.11210)
[2024-08-22]
* [Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey](https://arxiv.org/abs/2408.12889)
:star:[code](https://github.com/YichiZhang98/SAM4MIS)
[2024-08-26]
* 医学影像分析
* [A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond](https://arxiv.org/abs/2410.02362)
[2024-10-04]
* [Self-eXplainable AI for Medical Image Analysis: A Survey and New Outlooks](https://arxiv.org/abs/2410.02331)
[2024-10-04]
* 细胞核实例分割
* [A Survey on Cell Nuclei Instance Segmentation and Classification: Leveraging Context and Attention](https://arxiv.org/abs/2407.18673)
[2024-07-29]
* 神经成像中的异常检测
* [Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis](https://arxiv.org/abs/2405.05658)
[2024-05-10]
* 报告生成
* [Automated Radiology Report Generation: A Review of Recent Advances](https://arxiv.org/abs/2405.10842)
[2024-05-20]
* [A Survey of Deep Learning-based Radiology Report Generation Using Multimodal Data](https://arxiv.org/abs/2405.12833)
[2024-05-22]
* 基于步态的神经退行性疾病诊断中的人工智能调查
* [A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis](https://arxiv.org/abs/2405.13082)
:star:[code](https://github.com/Kali-Hac/AI4NDD-Survey)
[2024-05-24]
* 目标检测
* [A Review and Implementation of Object Detection Models and Optimizations for Real-time Medical Mask Detection during the COVID-19 Pandemic](https://arxiv.org/abs/2405.18387)
[2024-05-29]
* 肺炎检测
* [A systematic review: Deep learning-based methods for pneumonia region detection](https://arxiv.org/abs/2408.13315)
[2024-08-27]
* 癌症检测
* [Federated and Transfer Learning for Cancer Detection Based on Image Analysis](https://arxiv.org/abs/2405.20126)
[2024-05-31]
* MRI 重建
* [A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning](https://arxiv.org/abs/2406.02626)
[2024-06-06]
* [A Review of Electromagnetic Elimination Methods for low-field portable MRI scanner](https://arxiv.org/abs/2406.17804)
[2024-06-27]## Image Classification(图像分类)
* [High-energy physics image classification: A Survey of Jet Applications](https://arxiv.org/abs/2403.11934)
[2024-03-19]
* [Noisy Label Processing for Classification: A Survey](https://arxiv.org/abs/2404.04159)
[2024-04-08]
* [Traditional to Transformers: A Survey on Current Trends and Future Prospects for Hyperspectral Image Classification](https://export.arxiv.org/abs/2404.14955)
:star:[code](https://github.com/mahmad00/Conventional-to-Transformer-for-Hyperspectral-Image-Classification-Survey-2024.)
[2024-04-24]
* [Convolutional Neural Networks and Vision Transformers for Fashion MNIST Classification: A Literature Review](https://arxiv.org/abs/2406.03478)
[2024-06-06]
* [A review on vision-based motion estimation](https://arxiv.org/abs/2407.14478)
[2024-07-22]
* [On the Element-Wise Representation and Reasoning in Zero-Shot Image Recognition: A Systematic Survey](https://arxiv.org/abs/2408.04879)
[2024-08-12]## Image Retrieval
* [A Review of Image Retrieval Techniques: Data Augmentation and Adversarial Learning Approaches](https://arxiv.org/abs/2409.01219)
[2024-09-04]## Image Captioning(图像字幕)
* [Surveying the Landscape of Image Captioning Evaluation: A Comprehensive Taxonomy and Novel Ensemble Method](https://arxiv.org/abs/2408.04909)
[2024-08-12]## Image Segmentation(图像分割)
* [Image Segmentation in Foundation Model Era: A Survey](https://arxiv.org/abs/2408.12957)
[2024-08-26]
* [On Efficient Variants of Segment Anything Model: A Survey](https://arxiv.org/abs/2410.04960)
[2024-10-08]
* 语义分割
* [Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey](https://arxiv.org/abs/2403.01909)
[2024-03-06]无PDF
* [Deep Learning-Based 3D Instance and Semantic Segmentation: A Review](https://arxiv.org/abs/2406.13308)
[2024-06-21]
* [Deep Learning on 3D Semantic Segmentation: A Detailed Review](https://arxiv.org/abs/2411.02104)
:star:[code](https://github.com/thobet/Deep-Learning-on-3D-Semantic-Segmentation-a-Detailed-Review)
[2024-11-05]
* 纹理分割
* [Review of wavelet-based unsupervised texture segmentation, advantage of adaptive wavelets](https://arxiv.org/abs/2410.19191)
[2024-10-28]## Image retrieval(图像检索)
* [A Survey of Multimodal Composite Editing and Retrieval](https://arxiv.org/abs/2409.05405)
:star:[code](https://github.com/fuxianghuang1/Multimodal-Composite-Editing-and-Retrieval)
[2024-09-10]## Super-Resolution(超分辨率)
* ISR
* [Diffusion Models, Image Super-Resolution And Everything: A Survey](https://arxiv.org/abs/2401.00736)
[2024-01-02]## Image and Video Progress
* 修复
* [Deep Learning-based Image and Video Inpainting: A Survey](https://arxiv.org/abs/2401.03395)
[2024-01-09]
* [Reimagining Reality: A Comprehensive Survey of Video Inpainting Techniques](https://arxiv.org/abs/2401.17883)
[2024-02-01]
* [Transformer-based Image and Video Inpainting: Current Challenges and Future Directions](https://arxiv.org/abs/2407.00226)
[2024-07-02]
* 恢复
* [Taming Diffusion Models for Image Restoration: A Review](https://arxiv.org/abs/2409.10353)
[2024-09-17]
* [A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends](https://arxiv.org/abs/2410.15067)
:star:[code](https://github.com/Harbinzzy/All-in-One-Image-Restoration-Survey)
[2024-10-22]
* 着色
* [Computer-aided Colorization State-of-the-science: A Survey](https://arxiv.org/abs/2410.02288)
:star:[code](https://github.com/DanielCho-HK/Colorization)
[2024-10-04]
* 去噪
* [On normalization-equivariance properties of supervised and unsupervised denoising methods: a survey](https://arxiv.org/abs/2402.15352)
[2024-02-26]
* 去模糊
* [Application of Deep Learning in Blind Motion Deblurring: Current Status and Future Prospects](https://arxiv.org/abs/2401.05055)
:star:[code](https://github.com/VisionVerse/Blind-Motion-Deblurring-Survey)
[2024-01-11]
* 去阴影
* [Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey](https://arxiv.org/abs/2407.08865)
:star:[code](https://github.com/GuoLanqing/Awesome-Shadow-Removal)
[2024-07-15]
* 去大气湍流
* [Deep Learning Techniques for Atmospheric Turbulence Removal: A Review](https://arxiv.org/abs/2409.14587)
[2024-09-24]
* 图像增强
* 水下图像增强
* [A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning](https://arxiv.org/abs/2405.19684)
:star:[code](https://github.com/YuZhao1999/UIE)
[2024-05-31]
* 图像数据增强
* [Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions](https://arxiv.org/abs/2407.04103)
[2024-07-08]## Image Segmentation
* [Systematic review of image segmentation using complex networks](https://arxiv.org/abs/2401.02758)
[2024-01-08]## Image/video compression(图像/视频压缩)
* [The evolution of volumetric video: A survey of smart transcoding and compression approaches](https://arxiv.org/abs/2411.02095)
[2024-11-05]## Face(人脸)
* [SoK: Facial Deepfake Detectors](https://arxiv.org/abs/2401.04364)
[2024-01-10]
* [Neuromorphic Face Analysis: a Survey](https://arxiv.org/abs/2402.11631)
[2024-02-20]
* [A Comprehensive Survey of Masked Faces: Recognition, Detection, and Unmasking](https://arxiv.org/abs/2405.05900)
[2024-05-10]
* [Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey](https://arxiv.org/abs/2406.06965)
:star:[code](https://github.com/qiqitao77/Comprehensive-Advances-in-Deepfake-Detection-Spanning-Diverse-Modalities)
[2024-06-12]
* [Artificial Immune System of Secure Face Recognition Against Adversarial Attacks](https://arxiv.org/pdf/2406.18144)
:star:[code](https://github.com/RenMin1991/SIDE)
[2024-06-27]
* [Complex Emotion Recognition System using basic emotions via Facial Expression, EEG, and ECG Signals: a review](https://arxiv.org/abs/2409.07493)
[2024-09-13]
* [A Survey on Physical Adversarial Attacks against Face Recognition Systems](https://arxiv.org/abs/2410.16317)
[2024-10-23]
* 人脸表情
* [A Survey on Facial Expression Recognition of Static and Dynamic Emotions](https://arxiv.org/abs/2408.15777)
:star:[code](https://github.com/wangyanckxx/SurveyFER)
[2024-08-29]
* 群体情绪识别(Group-level Emotion Recognition ,GReco)
* [A Survey of Deep Learning for Group-level Emotion Recognition](https://arxiv.org/abs/2408.15276)
[2024-08-29]
* 人脸伪造检测
* [Deep Learning Technology for Face Forgery Detection: A Survey](https://arxiv.org/abs/2409.14289)
[2024-09-24]## 3D Reconstruction
* [3D Scene Geometry Estimation from 360∘ Imagery: A Survey](https://arxiv.org/abs/2401.09252)
[2024-01-18]
* [Survey on Modeling of Articulated Objects](https://arxiv.org/abs/2403.14937)
[2024-03-25]
* [RGB Guided ToF Imaging System: A Survey of Deep Learning-based Methods](https://arxiv.org/abs/2405.10357)
[2024-05-20]
* [A Survey on Text-guided 3D Visual Grounding: Elements, Recent Advances, and Future Directions](https://arxiv.org/abs/2406.05785)
:star:[code](https://github.com/liudaizong/Awesome-3D-Visual-Grounding)
[2024-06-11]
* [3D Representation Methods: A Survey](https://arxiv.org/abs/2410.06475)
[2024-10-10]
* 三维视觉
* [Diffusion Models in 3D Vision: A Survey](https://arxiv.org/abs/2410.04738)
[2024-10-08]
* 三维重建
* [Recent Trends in 3D Reconstruction of General Non-Rigid Scenes](https://arxiv.org/abs/2403.15064)
[2024-03-25]
* [Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review](https://arxiv.org/abs/2405.03417)
[2024-05-07]
* [Survey on Fundamental Deep Learning 3D Reconstruction Techniques](https://arxiv.org/abs/2407.08137)
[2024-07-12]
* [A Review of 3D Reconstruction Techniques for Deformable Tissues in Robotic Surgery](https://arxiv.org/abs/2408.04426)
:star:[code](https://github.com/Epsilon404/surgicalnerf)
[2024-08-09]
* 三维形状
* [A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts](https://arxiv.org/abs/2410.14770)
[2024-10-22]
* 3D 生成
* [Advances in 3D Generation: A Survey](https://arxiv.org/abs/2401.17807)
[2024-02-01]
* 3D 密集字幕
* [A Comprehensive Survey of 3D Dense Captioning: Localizing and Describing Objects in 3D Scenes](https://arxiv.org/abs/2403.07469)
[2024-03-13]
* 深度估计
* [Geometric Constraints in Deep Learning Frameworks: A Survey](https://arxiv.org/abs/2403.12431)
[2024-03-20]
* [Deep Learning-based Depth Estimation Methods from Monocular Image and Videos: A Comprehensive Survey](https://arxiv.org/abs/2406.19675)
[2024-07-01]
* [Event-based Stereo Depth Estimation: A Survey](https://arxiv.org/abs/2409.17680)
:star:[code](https://docs.google.com/spreadsheets/d/1DfmVXdg3H9iaLpkXNm5ygB6ald9dK0ggO0rUDXEDTXE/edit?gid=0#gid=0)
[2024-09-27]
* 三维场景理解
* [When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models](https://arxiv.org/abs/2405.10255)
:star:[code](https://github.com/ActiveVisionLab/Awesome-LLM-3D)
[2024-05-17]
* Stereo Matching
* [A Survey on Deep Stereo Matching in the Twenties](https://arxiv.org/abs/2407.07816)
:star:[code](https://github.com/fabiotosi92/Awesome-Deep-Stereo-Matching)
[2024-07-11]
* 3DGS
* [3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods](https://arxiv.org/abs/2407.09510)
:star:[code](http://w-m.github.io/3dgs-compression-survey/)
[2024-07-16]
* [3D Gaussian Splatting: Survey, Technologies, Challenges, and Opportunities](https://arxiv.org/abs/2407.17418)
[2024-07-25]
* MVS
* [Learning-based Multi-View Stereo: A Survey](https://arxiv.org/abs/2408.15235)
[2024-08-28]## 1.Unkown(未分)
* [Comprehensive Exploration of Synthetic Data Generation: A Survey](https://arxiv.org/abs/2401.02524)
[2024-01-08]
* [Image-based Deep Learning for Smart Digital Twins: a Review](https://arxiv.org/abs/2401.02523)
[2024-01-08]
* [A Survey on 3D Gaussian Splatting](https://arxiv.org/abs/2401.03890)
[2024-01-09]
* [A Survey on African Computer Vision Datasets, Topics and Researchers](https://arxiv.org/abs/2401.11617)
:star:[code](https://ro-ya-cv4africa.github.io/homepage/)
[2024-01-23]
* [Parameter-Efficient Fine-Tuning for Pre-Trained Vision Models: A Survey](https://arxiv.org/abs/2402.02242)
:star:[code](https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning)
[2024-02-06]
* [A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence](https://arxiv.org/abs/2402.12928)
[2024-02-21]
* [Asphalt Concrete Characterization Using Digital Image Correlation: A Systematic Review of Best Practices, Applications, and Future Vision](https://arxiv.org/abs/2402.17074)
[2024-02-28]
* [Lightweight Deep Learning for Resource-Constrained Environments: A Survey](https://arxiv.org/abs/2404.07236)
[2024-04-12]
* [A Survey of Neural Network Robustness Assessment in Image Recognition](https://arxiv.org/abs/2404.08285)
[2024-04-15]
* [State Space Model for New-Generation Network Alternative to Transformers: A Survey](https://arxiv.org/abs/2404.09516)
:star:[code](https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List)
[2024-04-16]
* [A Survey on Vision Mamba: Models, Applications and Challenges](https://arxiv.org/abs/2404.18861)
:star:[code](https://github.com/Ruixxxx/Awesome-Vision-Mamba-Models)
[2024-04-30]
* [Generative Artificial Intelligence: A Systematic Review and Applications](https://arxiv.org/abs/2405.11029)
[2024-05-21]
* [A Review of Pulse-Coupled Neural Network Applications in Computer Vision and Image Processing](https://arxiv.org/abs/2406.00239)
[2024-06-04]
* [Exploring the Potential of Polynomial Basis Functions in Kolmogorov-Arnold Networks: A Comparative Study of Different Groups of Polynomials](https://arxiv.org/abs/2406.02583)
[2024-06-06]
* [Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting](https://arxiv.org/abs/2406.04867)
[2024-06-11]
* [Diffusion Models in Low-Level Vision: A Survey](https://arxiv.org/abs/2406.11138)
:star:[code](https://github.com/ChunmingHe/awesome-diffusion-models-in-low-level-vision)
[2024-06-18]
* [Public Computer Vision Datasets for Precision Livestock Farming: A Systematic Survey](https://arxiv.org/abs/2406.10628)
[2024-06-18]
* [Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI](https://arxiv.org/abs/2407.06886)
:star:[code](https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List)
[2024-07-10]
* [Event-based vision on FPGAs -- a survey](https://arxiv.org/abs/2407.08356)
[2024-07-12]
* [Fairness and Bias Mitigation in Computer Vision: A Survey](https://arxiv.org/abs/2408.02464)
[2024-08-06]
* [A Review of Pseudo-Labeling for Computer Vision](https://arxiv.org/abs/2408.07221)
[2024-08-15]
* [Generative AI in Industrial Machine Vision -- A Review](https://arxiv.org/abs/2408.10775)
[2024-08-21]
* [Recent Event Camera Innovations: A Survey](https://arxiv.org/abs/2408.13627)
:star:[code](https://github.com/chakravarthi589/Event-based-Vision_Resources)
[2024-08-27]
* [How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception](https://arxiv.org/abs/2408.17222)
[2024-09-02]
* [Local map Construction Methods with SD map: A Novel Survey](https://arxiv.org/abs/2409.02415)
[2024-09-05]
* [A Survey on Mixup Augmentations and Beyond](https://arxiv.org/abs/2409.05202)
:star:[code](https://github.com/Westlake-AI/Awesome-Mixup)
[2024-09-10]
* [Transfer Learning Applied to Computer Vision Problems: Survey on Current Progress, Limitations, and Opportunities](https://arxiv.org/abs/2409.07736)
[2024-09-13]
* [Mamba in Vision: A Comprehensive Survey of Techniques and Applications](https://arxiv.org/abs/2410.03105)
:star:[code](https://github.com/maklachur/Mamba-in-Computer-Vision)
[2024-10-07]
* [AI-Driven Approaches for Glaucoma Detection -- A Comprehensive Review](https://arxiv.org/abs/2410.15947)
[2024-10-22]
* [Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey](https://arxiv.org/abs/2411.03688)
[2024-11-07]## 2022 年论文分类汇总戳这里
↘️[CVPR-2022-Papers](https://github.com/52CV/CVPR-2022-Papers/blob/main/README.md)
↘️[WACV-2022-Papers](https://github.com/52CV/WACV-2022-Papers)
↘️[ECCV-2022-Papers](https://github.com/52CV/ECCV-2022-Papers/blob/main/README.md)## 2021 年论文分类汇总戳这里
↘️[ICCV-2021-Papers](https://github.com/52CV/ICCV-2021-Papers)
↘️[CVPR-2021-Papers](https://github.com/52CV/CVPR-2021-Papers)## 2020 年论文分类汇总戳这里
↘️[CVPR-2020-Papers](https://github.com/52CV/CVPR-2020-Papers)
↘️[ECCV-2020-Papers](https://github.com/52CV/ECCV-2020-Papers)## 扫码CV君微信(注明:CV)入微信交流群:
