https://github.com/AI-liu/Complex-YOLO
Complex-YOLO: Real-time 3D Object Detection on Point Clouds pytorch Darknet
https://github.com/AI-liu/Complex-YOLO
Last synced: about 1 month ago
JSON representation
Complex-YOLO: Real-time 3D Object Detection on Point Clouds pytorch Darknet
- Host: GitHub
- URL: https://github.com/AI-liu/Complex-YOLO
- Owner: AI-liu
- Created: 2018-08-06T13:16:54.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-21T16:10:01.000Z (about 6 years ago)
- Last Synced: 2024-10-28T06:57:53.982Z (6 months ago)
- Language: Python
- Homepage:
- Size: 333 KB
- Stars: 444
- Watchers: 16
- Forks: 114
- Open Issues: 25
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-yolo-object-detection - AI-liu/Complex-YOLO - liu/Complex-YOLO?style=social"/> : This is an unofficial implementation of "Complex-YOLO: Real-time 3D Object Detection on Point Clouds in pytorch". (**[arXiv 2018](https://arxiv.org/abs/1803.06199)**) (Object Detection Applications)
- awesome-yolo-object-detection - AI-liu/Complex-YOLO - liu/Complex-YOLO?style=social"/> : This is an unofficial implementation of "Complex-YOLO: Real-time 3D Object Detection on Point Clouds in pytorch". (**[arXiv 2018](https://arxiv.org/abs/1803.06199)**) (Applications)
README
# Complex-YOLO
Complex-YOLO: Real-time 3D Object Detection on Point Clouds pytorch# Introduction
This is an unofficial implementation of Complex-YOLO: Real-time 3D Object Detection on Point Clouds in pytorch. A large part of this project is based on the work here:https://github.com/marvis/pytorch-yolo2Point Cloud Preprocessing is based on:https://github.com/skyhehe123/VoxelNet-pytorch
https://github.com/dongwoohhh/MV3D-Pytorch# Data Preparation
Download the 3D KITTI detection dataset.
Camera calibration matrices of object data set (16 MB)
Training labels of object data set (5 MB)
Velodyne point clouds (29 GB)
# Train
python3 main.py
trained model(using DarkNet) download link :https://pan.baidu.com/s/1yeU3Q-Oyozv7qFqrVhzj0A
# Result








