Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/AILab-CVC/YOLO-World
[CVPR 2024] Real-Time Open-Vocabulary Object Detection
https://github.com/AILab-CVC/YOLO-World
Last synced: 12 days ago
JSON representation
[CVPR 2024] Real-Time Open-Vocabulary Object Detection
- Host: GitHub
- URL: https://github.com/AILab-CVC/YOLO-World
- Owner: AILab-CVC
- License: gpl-3.0
- Created: 2024-01-29T02:04:07.000Z (9 months ago)
- Default Branch: master
- Last Pushed: 2024-07-30T14:59:19.000Z (3 months ago)
- Last Synced: 2024-10-22T21:54:05.280Z (17 days ago)
- Language: Python
- Homepage: https://www.yoloworld.cc
- Size: 3.86 MB
- Stars: 4,548
- Watchers: 41
- Forks: 444
- Open Issues: 300
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- AiTreasureBox - AILab-CVC/YOLO-World - 11-02_4607_0](https://img.shields.io/github/stars/AILab-CVC/YOLO-World.svg)|Real-Time Open-Vocabulary Object Detection| (Repos)
- awesome-yolo-object-detection - YOLO-World - CVC/YOLO-World?style=social"/> : "YOLO-World: Real-Time Open-Vocabulary Object Detection". (**[CVPR 2024](https://arxiv.org/abs/2401.17270)**). [www.yoloworld.cc](https://www.yoloworld.cc/) (Summary)
- awesome-yolo-object-detection - YOLO-World - CVC/YOLO-World?style=social"/> : "YOLO-World: Real-Time Open-Vocabulary Object Detection". (**[CVPR 2024](https://arxiv.org/abs/2401.17270)**). [www.yoloworld.cc](https://www.yoloworld.cc/) (Summary)
README
Tianheng Cheng2,3,*,
Lin Song1,📧,*,
Yixiao Ge1,🌟,2,
Wenyu Liu3,
Xinggang Wang3,📧,
Ying Shan1,2\* Equal contribution 🌟 Project lead 📧 Corresponding author
1 Tencent AI Lab, 2 ARC Lab, Tencent PCG
3 Huazhong University of Science and Technology
[![arxiv paper](https://img.shields.io/badge/Project-Page-green)](https://wondervictor.github.io/)
[![arxiv paper](https://img.shields.io/badge/arXiv-Paper-red)](https://arxiv.org/abs/2401.17270)
[![demo](https://img.shields.io/badge/🤗HugginngFace-Spaces-orange)](https://huggingface.co/spaces/stevengrove/YOLO-World)
[![Replicate](https://replicate.com/zsxkib/yolo-world/badge)](https://replicate.com/zsxkib/yolo-world)
[![hfpaper](https://img.shields.io/badge/🤗HugginngFace-Paper-yellow)](https://huggingface.co/papers/2401.17270)
[![license](https://img.shields.io/badge/License-GPLv3.0-blue)](LICENSE)
[![yoloworldseg](https://img.shields.io/badge/YOLOWorldxEfficientSAM-🤗Spaces-orange)](https://huggingface.co/spaces/SkalskiP/YOLO-World)
[![yologuide](https://img.shields.io/badge/📖Notebook-roboflow-purple)](https://supervision.roboflow.com/develop/notebooks/zero-shot-object-detection-with-yolo-world)
[![deploy](https://media.roboflow.com/deploy.svg)](https://inference.roboflow.com/foundation/yolo_world/)## Notice
We recommend that everyone **use English to communicate on issues**, as this helps developers from around the world discuss, share experiences, and answer questions together.
For business licensing and other related inquiries, don't hesitate to contact `[email protected]`.
## 🔥 Updates
`[2024-7-8]`: YOLO-World now has been integrated into [ComfyUI](https://github.com/StevenGrove/ComfyUI-YOLOWorld)! Come and try adding YOLO-World to your workflow now! You can access it at [StevenGrove/ComfyUI-YOLOWorld](https://github.com/StevenGrove/ComfyUI-YOLOWorld)!
`[2024-5-18]:` YOLO-World models have been [integrated with the FiftyOne computer vision toolkit](https://docs.voxel51.com/integrations/ultralytics.html#open-vocabulary-detection) for streamlined open-vocabulary inference across image and video datasets.
`[2024-5-16]:` Hey guys! Long time no see! This update contains (1) [fine-tuning guide](https://github.com/AILab-CVC/YOLO-World?#highlights--introduction) and (2) [TFLite Export](./docs/tflite_deploy.md) with INT8 Quantization.
`[2024-5-9]:` This update contains the real [`reparameterization`](./docs/reparameterize.md) 🪄, and it's better for fine-tuning on custom datasets and improves the training/inference efficiency 🚀!
`[2024-4-28]:` Long time no see! This update contains bugfixs and improvements: (1) ONNX demo; (2) image demo (support tensor input); (2) new pre-trained models; (3) image prompts; (4) simple version for fine-tuning / deployment; (5) guide for installation (include a `requirements.txt`).
`[2024-3-28]:` We provide: (1) more high-resolution pre-trained models (e.g., S, M, X) ([#142](https://github.com/AILab-CVC/YOLO-World/issues/142)); (2) pre-trained models with CLIP-Large text encoders. Most importantly, we preliminarily fix the **fine-tuning without `mask-refine`** and explore a new fine-tuning setting ([#160](https://github.com/AILab-CVC/YOLO-World/issues/160),[#76](https://github.com/AILab-CVC/YOLO-World/issues/76)). In addition, fine-tuning YOLO-World with `mask-refine` also obtains significant improvements, check more details in [configs/finetune_coco](./configs/finetune_coco/).
`[2024-3-16]:` We fix the bugs about the demo ([#110](https://github.com/AILab-CVC/YOLO-World/issues/110),[#94](https://github.com/AILab-CVC/YOLO-World/issues/94),[#129](https://github.com/AILab-CVC/YOLO-World/issues/129), [#125](https://github.com/AILab-CVC/YOLO-World/issues/125)) with visualizations of segmentation masks, and release [**YOLO-World with Embeddings**](./docs/prompt_yolo_world.md), which supports prompt tuning, text prompts and image prompts.
`[2024-3-3]:` We add the **high-resolution YOLO-World**, which supports `1280x1280` resolution with higher accuracy and better performance for small objects!
`[2024-2-29]:` We release the newest version of [ **YOLO-World-v2**](./docs/updates.md) with higher accuracy and faster speed! We hope the community can join us to improve YOLO-World!
`[2024-2-28]:` Excited to announce that YOLO-World has been accepted by **CVPR 2024**! We're continuing to make YOLO-World faster and stronger, as well as making it better to use for all.
`[2024-2-22]:` We sincerely thank [RoboFlow](https://roboflow.com/) and [@Skalskip92](https://twitter.com/skalskip92) for the [**Video Guide**](https://www.youtube.com/watch?v=X7gKBGVz4vs) about YOLO-World, nice work!
`[2024-2-18]:` We thank [@Skalskip92](https://twitter.com/skalskip92) for developing the wonderful segmentation demo via connecting YOLO-World and EfficientSAM. You can try it now at the [🤗 HuggingFace Spaces](https://huggingface.co/spaces/SkalskiP/YOLO-World).
`[2024-2-17]:` The largest model **X** of YOLO-World is released, which achieves better zero-shot performance!
`[2024-2-17]:` We release the code & models for **YOLO-World-Seg** now! YOLO-World now supports open-vocabulary / zero-shot object segmentation!
`[2024-2-15]:` The pre-traind YOLO-World-L with CC3M-Lite is released!
`[2024-2-14]:` We provide the [`image_demo`](demo.py) for inference on images or directories.
`[2024-2-10]:` We provide the [fine-tuning](./docs/finetuning.md) and [data](./docs/data.md) details for fine-tuning YOLO-World on the COCO dataset or the custom datasets!
`[2024-2-3]:` We support the `Gradio` demo now in the repo and you can build the YOLO-World demo on your own device!
`[2024-2-1]:` We've released the code and weights of YOLO-World now!
`[2024-2-1]:` We deploy the YOLO-World demo on [HuggingFace 🤗](https://huggingface.co/spaces/stevengrove/YOLO-World), you can try it now!
`[2024-1-31]:` We are excited to launch **YOLO-World**, a cutting-edge real-time open-vocabulary object detector.## TODO
YOLO-World is under active development and please stay tuned ☕️!
If you have suggestions📃 or ideas💡,**we would love for you to bring them up in the [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109)** ❤️!
> YOLO-World 目前正在积极开发中📃,如果你有建议或者想法💡,**我们非常希望您在 [Roadmap](https://github.com/AILab-CVC/YOLO-World/issues/109) 中提出来** ❤️!## [FAQ (Frequently Asked Questions)](https://github.com/AILab-CVC/YOLO-World/discussions/149)
We have set up an FAQ about YOLO-World in the discussion on GitHub. We hope everyone can raise issues or solutions during use here, and we also hope that everyone can quickly find solutions from it.
> 我们在GitHub的discussion中建立了关于YOLO-World的常见问答,这里将收集一些常见问题,同时大家可以在此提出使用中的问题或者解决方案,也希望大家能够从中快速寻找到解决方案
## Highlights & Introduction
This repo contains the PyTorch implementation, pre-trained weights, and pre-training/fine-tuning code for YOLO-World.
* YOLO-World is pre-trained on large-scale datasets, including detection, grounding, and image-text datasets.
* YOLO-World is the next-generation YOLO detector, with a strong open-vocabulary detection capability and grounding ability.
* YOLO-World presents a *prompt-then-detect* paradigm for efficient user-vocabulary inference, which re-parameterizes vocabulary embeddings as parameters into the model and achieve superior inference speed. You can try to export your own detection model without extra training or fine-tuning in our [online demo](https://huggingface.co/spaces/stevengrove/YOLO-World)!
## Model ZooWe've pre-trained YOLO-World-S/M/L from scratch and evaluate on the `LVIS val-1.0` and `LVIS minival`. We provide the pre-trained model weights and training logs for applications/research or re-producing the results.
### Zero-shot Inference on LVIS dataset
| model | Pre-train Data | Size | APmini | APr | APc | APf | APval | APr | APc | APf | weights |
| :------------------------------------------------------------------------------------------------------------------- | :------------------- | :----------------- | :--------------: | :------------: | :------------: | :------------: | :-------------: | :------------: | :------------: | :------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [YOLO-Worldv2-S](./configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 22.7 | 16.3 | 20.8 | 25.5 | 17.3 | 11.3 | 14.9 | 22.7 |[HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain-55b943ea.pth)|
| [YOLO-Worldv2-S](./configs/pretrain/yolo_world_v2_s_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 24.1 | 18.7 | 22.0 | 26.9 | 18.8 | 14.1 | 16.3 | 23.8 |[HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_s_obj365v1_goldg_pretrain_1280ft-fc4ff4f7.pth)|
| [YOLO-Worldv2-M](./configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 30.0 | 25.0 | 27.2 | 33.4 | 23.5 | 17.1 | 20.0 | 30.1 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain-c6237d5b.pth)|
| [YOLO-Worldv2-M](./configs/pretrain/yolo_world_v2_m_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 31.6 | 24.5 | 29.0 | 35.1 | 25.3 | 19.3 | 22.0 | 31.7 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_m_obj365v1_goldg_pretrain_1280ft-77d0346d.pth)|
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG | 640 | 33.0 | 22.6 | 32.0 | 35.8 | 26.0 | 18.6 | 23.0 | 32.6 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain-a82b1fe3.pth)|
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py) | O365+GoldG | 1280🔸 | 34.6 | 29.2 | 32.8 | 37.2 | 27.6 | 21.9 | 24.2 | 34.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_pretrain_1280ft-9babe3f6.pth)|
| [YOLO-Worldv2-L (CLIP-Large)](./configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) 🔥 | O365+GoldG | 640 | 34.0 | 22.0 | 32.6 | 37.4 | 27.1 | 19.9 | 23.9 | 33.9 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain-8ff2e744.pth)|
| [YOLO-Worldv2-L (CLIP-Large)](./configs/pretrain/yolo_world_v2_l_clip_large_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_800ft_lvis_minival.py) 🔥 | O365+GoldG | 800🔸 | 35.5 | 28.3 | 33.2 | 38.8 | 28.6 | 22.0 | 25.1 | 35.4 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_clip_large_o365v1_goldg_pretrain_800ft-9df82e55.pth)|
| [YOLO-Worldv2-L](./configs/pretrain/yolo_world_v2_l_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 32.9 | 25.3 | 31.1 | 35.8 | 26.1 | 20.6 | 22.6 | 32.3 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_l_obj365v1_goldg_cc3mlite_pretrain-ca93cd1f.pth)|
| [YOLO-Worldv2-X](./configs/pretrain/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 35.4 | 28.7 | 32.9 | 38.7 | 28.4 | 20.6 | 25.6 | 35.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain-8698fbfa.pth) |
| 🔥 [YOLO-Worldv2-X]() | O365+GoldG+CC3M-Lite | 1280🔸 | 37.4 | 30.5 | 35.2 | 40.7 | 29.8 | 21.1 | 26.8 | 37.0 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_x_obj365v1_goldg_cc3mlite_pretrain_1280ft-14996a36.pth) |
| [YOLO-Worldv2-XL](./configs/pretrain/yolo_world_v2_xl_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py) | O365+GoldG+CC3M-Lite | 640 | 36.0 | 25.8 | 34.1 | 39.5 | 29.1 | 21.1 | 26.3 | 35.8 | [HF Checkpoints 🤗](https://huggingface.co/wondervictor/YOLO-World/blob/main/yolo_world_v2_xl_obj365v1_goldg_cc3mlite_pretrain-5daf1395.pth) |
**NOTE:**
1. APmini: evaluated on LVIS `minival`.
3. APval: evaluated on LVIS `val 1.0`.
4. [HuggingFace Mirror](https://hf-mirror.com/) provides the mirror of HuggingFace, which is a choice for users who are unable to reach.
5. 🔸: fine-tuning models with the pre-trained data.**Pre-training Logs:**
We provide the pre-training logs of `YOLO-World-v2`. Due to the unexpected errors of the local machines, the training might be interrupted several times.
| Model | YOLO-World-v2-S | YOLO-World-v2-M | YOLO-World-v2-L | YOLO-World-v2-X |
| :--- | :-------------: | :--------------: | :-------------: | :-------------: |
|Pre-training Log | [Part-1](https://drive.google.com/file/d/1oib7pKfA2h1U_5-85H_s0Nz8jWd0R-WP/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/11cZ6OZy80VTvBlZy3kzLAHCxx5Iix5-n/view?usp=drive_link) | [Part-1](https://drive.google.com/file/d/1E6vYSS8kBipGc8oQnsjAfeUAx8I9yOX7/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/1fbM7vt2tgSeB8o_7tUDofWvpPNSViNj5/view?usp=drive_link) | [Part-1](https://drive.google.com/file/d/1Tola1QGJZTL6nGy3SBxKuknfNfREDm8J/view?usp=drive_link), [Part-2](https://drive.google.com/file/d/1mTBXniioUb0CdctCG4ckIU6idGo0NnH8/view?usp=drive_link) | [Final part](https://drive.google.com/file/d/1aEUA_EPQbXOrpxHTQYB6ieGXudb1PLpd/view?usp=drive_link)|## Getting started
### 1. Installation
YOLO-World is developed based on `torch==1.11.0` `mmyolo==0.6.0` and `mmdetection==3.0.0`. Check more details about `requirements` and `mmcv` in [docs/installation](./docs/installation.md).
#### Clone Project
```bash
git clone --recursive https://github.com/AILab-CVC/YOLO-World.git
```
#### Install```bash
pip install torch wheel -q
pip install -e .
```### 2. Preparing Data
We provide the details about the pre-training data in [docs/data](./docs/data.md).
## Training & Evaluation
We adopt the default [training](./tools/train.py) or [evaluation](./tools/test.py) scripts of [mmyolo](https://github.com/open-mmlab/mmyolo).
We provide the configs for pre-training and fine-tuning in `configs/pretrain` and `configs/finetune_coco`.
Training YOLO-World is easy:```bash
chmod +x tools/dist_train.sh
# sample command for pre-training, use AMP for mixed-precision training
./tools/dist_train.sh configs/pretrain/yolo_world_l_t2i_bn_2e-4_100e_4x8gpus_obj365v1_goldg_train_lvis_minival.py 8 --amp
```
**NOTE:** YOLO-World is pre-trained on 4 nodes with 8 GPUs per node (32 GPUs in total). For pre-training, the `node_rank` and `nnodes` for multi-node training should be specified.Evaluating YOLO-World is also easy:
```bash
chmod +x tools/dist_test.sh
./tools/dist_test.sh path/to/config path/to/weights 8
```**NOTE:** We mainly evaluate the performance on LVIS-minival for pre-training.
## Fine-tuning YOLO-World
Chose your pre-trained YOLO-World and Fine-tune it!
YOLO-World supports **zero-shot inference**, and three types of **fine-tuning recipes**: **(1) normal fine-tuning**, **(2) prompt tuning**, and **(3) reparameterized fine-tuning**.
* Normal Fine-tuning: we provide the details about fine-tuning YOLO-World in [docs/fine-tuning](./docs/finetuning.md).
* Prompt Tuning: we provide more details ahout prompt tuning in [docs/prompt_yolo_world](./docs/prompt_yolo_world.md).
* Reparameterized Fine-tuning: the reparameterized YOLO-World is more suitable for specific domains far from generic scenes. You can find more details in [docs/reparameterize](./docs/reparameterize.md).
## Deployment
We provide the details about deployment for downstream applications in [docs/deployment](./docs/deploy.md).
You can directly download the ONNX model through the online [demo](https://huggingface.co/spaces/stevengrove/YOLO-World) in Huggingface Spaces 🤗.- [x] ONNX export and demo: [docs/deploy](https://github.com/AILab-CVC/YOLO-World/blob/master/docs/deploy.md)
- [x] TFLite and INT8 Quantization: [docs/tflite_deploy](https://github.com/AILab-CVC/YOLO-World/blob/master/docs/tflite_deploy.md)
- [ ] TensorRT: coming soon.
- [ ] C++: coming soon.## Demo
See [`demo`](./demo) for more details
- [x] `gradio_demo.py`: Gradio demo, ONNX export
- [x] `image_demo.py`: inference with images or a directory of images
- [x] `simple_demo.py`: a simple demo of YOLO-World, using `array` (instead of path as input).
- [x] `video_demo.py`: inference YOLO-World on videos.
- [x] `inference.ipynb`: jupyter notebook for YOLO-World.
- [x] [Google Colab Notebook](https://colab.research.google.com/drive/1F_7S5lSaFM06irBCZqjhbN7MpUXo6WwO?usp=sharing): We sincerely thank [Onuralp](https://github.com/onuralpszr) for sharing the [Colab Demo](https://colab.research.google.com/drive/1F_7S5lSaFM06irBCZqjhbN7MpUXo6WwO?usp=sharing), you can have a try 😊!## Acknowledgement
We sincerely thank [mmyolo](https://github.com/open-mmlab/mmyolo), [mmdetection](https://github.com/open-mmlab/mmdetection), [GLIP](https://github.com/microsoft/GLIP), and [transformers](https://github.com/huggingface/transformers) for providing their wonderful code to the community!
## Citations
If you find YOLO-World is useful in your research or applications, please consider giving us a star 🌟 and citing it.```bibtex
@inproceedings{Cheng2024YOLOWorld,
title={YOLO-World: Real-Time Open-Vocabulary Object Detection},
author={Cheng, Tianheng and Song, Lin and Ge, Yixiao and Liu, Wenyu and Wang, Xinggang and Shan, Ying},
booktitle={Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```## Licence
YOLO-World is under the GPL-v3 Licence and is supported for commercial usage. If you need a commercial license for YOLO-World, please feel free to contact us.