Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ANTsX/ANTsPyNet
Pre-trained models and utilities for deep learning on medical images in Python
https://github.com/ANTsX/ANTsPyNet
convolutional-neural-networks deep-learning python
Last synced: 28 days ago
JSON representation
Pre-trained models and utilities for deep learning on medical images in Python
- Host: GitHub
- URL: https://github.com/ANTsX/ANTsPyNet
- Owner: ANTsX
- License: apache-2.0
- Created: 2019-05-28T16:44:24.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-05-18T15:42:28.000Z (7 months ago)
- Last Synced: 2024-05-21T07:13:27.099Z (7 months ago)
- Topics: convolutional-neural-networks, deep-learning, python
- Language: Python
- Homepage: https://antspynet.readthedocs.io
- Size: 11.1 MB
- Stars: 173
- Watchers: 10
- Forks: 28
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
- Code of conduct: code_of_conduct.md
Awesome Lists containing this project
- awesome_medical - ANTsPyNet
README
[![PyPI - Downloads](https://img.shields.io/pypi/dm/antspynet?label=pypi%20downloads)](https://pypi.org/project/antspynet/)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg)](code_of_conduct.md)
[![PubMed](https://img.shields.io/badge/ANTsX_paper-Open_Access-8DABFF?logo=pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)# Advanced Normalization Tools for Deep Learning in Python (ANTsPyNet)
A collection of deep learning architectures and applications ported to the Python language and tools for basic medical image processing. Based on `keras` and `tensorflow` with cross-compatibility with our R analog [ANTsRNet](https://github.com/ANTsX/ANTsRNet/). ANTsPyNet provides three high-level features:
- A large collection of common deep learning architectures for medical imaging that can be initialized
- Various pre-trained deep learning models to perform key medical imaging tasks
- Utility functions to improve training and evaluating of deep learning models on medical images
## Overview
Installation
### Binaries
The easiest way to install ANTsPyNet is via pip.
```
python -m pip install antspynet
```### From Source
Alternatively, you can download and install from source.
```
git clone https://github.com/ANTsX/ANTsPyNet
cd ANTsPyNet
python -m pip install .
```Architectures
### Image voxelwise segmentation/regression
- [U-Net (2-D, 3-D)](https://arxiv.org/abs/1505.04597)
- [U-Net + ResNet (2-D, 3-D)](https://arxiv.org/abs/1608.04117)
- [Dense U-Net (2-D, 3-D)](https://arxiv.org/pdf/1709.07330.pdf)### Image classification/regression
- [AlexNet (2-D, 3-D)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- [VGG (2-D, 3-D)](https://arxiv.org/abs/1409.1556)
- [ResNet (2-D, 3-D)](https://arxiv.org/abs/1512.03385)
- [ResNeXt (2-D, 3-D)](https://arxiv.org/abs/1611.05431)
- [WideResNet (2-D, 3-D)](http://arxiv.org/abs/1605.07146)
- [DenseNet (2-D, 3-D)](https://arxiv.org/abs/1608.06993)### Object detection
### Image super-resolution
- [Super-resolution convolutional neural network (SRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)
- [Expanded super-resolution (ESRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)
- [Denoising auto encoder super-resolution (DSRCNN) (2-D, 3-D)]()
- [Deep denoise super-resolution (DDSRCNN) (2-D, 3-D)](https://arxiv.org/abs/1606.08921)
- [ResNet super-resolution (SRResNet) (2-D, 3-D)](https://arxiv.org/abs/1609.04802)
- [Deep back-projection network (DBPN) (2-D, 3-D)](https://arxiv.org/abs/1803.02735)
- [Super resolution GAN](https://arxiv.org/abs/1609.04802)### Registration and transforms
- [Spatial transformer network (STN) (2-D, 3-D)](https://arxiv.org/abs/1506.02025)
### Generative adverserial networks
- [Generative adverserial network (GAN)](https://arxiv.org/abs/1406.2661)
- [Deep Convolutional GAN](https://arxiv.org/abs/1511.06434)
- [Wasserstein GAN](https://arxiv.org/abs/1701.07875)
- [Improved Wasserstein GAN](https://arxiv.org/abs/1704.00028)
- [Cycle GAN](https://arxiv.org/abs/1703.10593)
- [Super resolution GAN](https://arxiv.org/abs/1609.04802)### Clustering
- [Deep embedded clustering (DEC)](https://arxiv.org/abs/1511.06335)
- [Deep convolutional embedded clustering (DCEC)](https://xifengguo.github.io/papers/ICONIP17-DCEC.pdf)Applications
* [Brain applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-applications)
* [Multi-modal brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-extraction)
* [Deep Atropos (Six-tissue brain segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deep-atropos)
* [Cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cortical-thickness)
* [Desikan-Killiany-Tourville parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#desikan-killiany-tourville-parcellation)
* [DeepFLASH (medial temporal lobe parcellation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deepflash-medial-temporal-lobe-parcellation)
* [Hippmapp3r (hippocampal segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hippmapp3r)
* [Brain AGE](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-age)
* [Claustrum segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#claustrum-segmentation)
* [Hypothalamus segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hypothalamus-segmentation)
* [Cerebellum morphology](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cerebellum-morphology)
* White matter hyperintensities segmentation
* [SYSU](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-sysu)
* [Hypermapp3r](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-hypermapp3r)
* [SHIVA](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-shiva)
* [ANTsXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-antsxnet)
* [Perivascular spaces segmentation (SHIVA)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#perivascular-spaces-segmentation-shiva)
* [Brain tumor segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-tumor-segmentation)
* [MRA-TOF vessel segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mra-tof-vessel-segmentation)
* [Lesion segmentation (WIP)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lesion-segmentation-wip)
* [Whole head inpainting](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#whole-head-inpainting)* [Lung applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-applications)
* [Lung extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-extraction)
* [Functional lung segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#functional-lung-segmentation)
* [Pulmonary artery segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-artery-segmentation)
* [Pulmonary airway segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-airway-segmentation)
* [CheXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#chexnet)* [Mouse applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-applications)
* [Mouse brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-extraction)
* [Mouse brain parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-parcellation)
* [Mouse cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-cortical-thickness)* [General applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#general-applications)
* [MRI super resolution](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mri-super-resolution)
* [No reference image quality assesment using TID](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#no-reference-image-quality-assesment-using-tid)
* [Full reference image quality assessment](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#full-reference-image-quality-assessment)* [Data augmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#data-augmentation)
* [Noise](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#noise)
* [Histogram intensity warping](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#histogram-intensity-warping)
* [Simulate bias field](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#simulate-bias-field)
* [Random spatial transformations](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#random-spatial-transformations)
* [Combined](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#combined)Publications
- Nicholas J. Tustison, Min Chen, Fae N. Kronman, Jeffrey T. Duda, Clare Gamlin, Mia G. Tustison, Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxi Wang, Lydia Ng, Yongsoo Kim, and James C. Gee. The ANTsX Ecosystem for Mapping the Mouse Brain. [(biorxiv)](https://www.biorxiv.org/content/10.1101/2024.05.01.592056v1)
- Nicholas J. Tustison, Michael A. Yassa, Batool Rizvi, Philip A. Cook, Andrew J. Holbrook, Mithra Sathishkumar, Mia G. Tustison, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. _Scientific Reports_, 14(1):8848, Apr 2024. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/38632390/)
- Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. _Magnetic Resonance in Medicine_, 86(5):2822-2836, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/34227163/)
- Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, _Academic Radiology_, 28(11):1481-1487, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/32771313/)
- Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. _Scientific Reports_. 11(1):9068, Apr 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)
- Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, _Magnetic Resonance Imaging_, 64:142-153, Dec 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/31200026)
- Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, _Academic Radiology_, 26(3):412-423, Mar 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30195415)
- Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. _PLoS One_, 13(9):e0204071, Sep 2018. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30235253)
- Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY [doi](https://doi.org/10.1007/978-1-4939-7647-8_2)
License
The ANTsPyNet package is released under an [Apache License](https://github.com/ANTsX/ANTsPyNet/blob/master/LICENSE.md).
Acknowledgements
- We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research.
- We gratefully acknowledge the grant support of the [Office of Naval Research](https://www.onr.navy.mil) and [Cohen Veterans Bioscience](https://www.cohenveteransbioscience.org).
## Other resources
[ANTsPyNet Documentation](https://antsx.github.io/ANTsPyNet/)
[ANTsXNet self-contained examples](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#antsxnet)