Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Aavache/mlx-resnet
ResNet implementation with the MLX, Apple's DL framework.
https://github.com/Aavache/mlx-resnet
apple computer-vision deep-learning machine-learning mlx mnist resnet
Last synced: 10 days ago
JSON representation
ResNet implementation with the MLX, Apple's DL framework.
- Host: GitHub
- URL: https://github.com/Aavache/mlx-resnet
- Owner: Aavache
- Created: 2023-12-09T18:41:12.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2023-12-09T18:44:37.000Z (11 months ago)
- Last Synced: 2023-12-09T20:36:51.432Z (11 months ago)
- Topics: apple, computer-vision, deep-learning, machine-learning, mlx, mnist, resnet
- Language: Python
- Homepage:
- Size: 6.84 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
🍏 MLX - ResNet 🍏
ResNet implementation with the [MLX](https://github.com/ml-explore/mlx), Apple's deep learning framework.
Drop a ⭐️!!
## MNIST with ResNet18
Here the logs when training with ResNet18 (no tuning at all) for couple epochs:
```sh
Epoch: 0 | Iter: 0 | Loss: 2.550
Epoch: 0 | Iter: 50 | Loss: 1.813
Epoch: 0 | Iter: 100 | Loss: 1.241
Epoch: 0 | Iter: 150 | Loss: 0.965
Epoch: 0 | Iter: 200 | Loss: 0.741
Epoch 0: Test accuracy 0.671
Epoch: 1 | Iter: 0 | Loss: 1.039
Epoch: 1 | Iter: 50 | Loss: 0.491
Epoch: 1 | Iter: 100 | Loss: 0.471
Epoch: 1 | Iter: 150 | Loss: 0.497
Epoch: 1 | Iter: 200 | Loss: 0.377
Epoch 1: Test accuracy 0.876
Epoch: 2 | Iter: 0 | Loss: 0.425
Epoch: 2 | Iter: 50 | Loss: 0.367
Epoch: 2 | Iter: 100 | Loss: 0.334
Epoch: 2 | Iter: 150 | Loss: 0.323
Epoch: 2 | Iter: 200 | Loss: 0.346
Epoch 2: Test accuracy 0.916
Epoch: 3 | Iter: 0 | Loss: 0.334
Epoch: 3 | Iter: 50 | Loss: 0.308
Epoch: 3 | Iter: 100 | Loss: 0.282
Epoch: 3 | Iter: 150 | Loss: 0.230
Epoch: 3 | Iter: 200 | Loss: 0.173
Epoch 3: Test accuracy 0.902
Epoch: 4 | Iter: 0 | Loss: 0.282
Epoch: 4 | Iter: 50 | Loss: 0.184
Epoch: 4 | Iter: 100 | Loss: 0.268
Epoch: 4 | Iter: 150 | Loss: 0.205
Epoch: 4 | Iter: 200 | Loss: 0.246
Epoch 4: Test accuracy 0.932
```## Future updates
* `dilation` and `groups` features in convolutional layers is missing ([issue](https://github.com/ml-explore/mlx/issues/100) created). More recent ResNet requires this parameters.
* Batch norm is also missing.
* No pretrained weights.## Contribute
Feel free to create issues and PRs :)