Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/AdityaNG/kan-gpt

The PyTorch implementation of Generative Pre-trained Transformers (GPTs) using Kolmogorov-Arnold Networks (KANs) for language modeling
https://github.com/AdityaNG/kan-gpt

gpt kanformers kolmogorov-arnold-networks kolmogorov-arnold-representation llm text-generation transformers

Last synced: 19 days ago
JSON representation

The PyTorch implementation of Generative Pre-trained Transformers (GPTs) using Kolmogorov-Arnold Networks (KANs) for language modeling

Awesome Lists containing this project

README

        

# KAN-GPT

![PyPI - Downloads](https://img.shields.io/pypi/dm/kan-gpt)
[![PyPI - Version](https://img.shields.io/pypi/v/kan-gpt)](https://pypi.org/project/kan-gpt/)
[![codecov](https://codecov.io/gh/AdityaNG/kan-gpt/branch/main/graph/badge.svg?token=kan-gpt_token_here)](https://codecov.io/gh/AdityaNG/kan-gpt)
[![CI](https://github.com/AdityaNG/kan-gpt/actions/workflows/main.yml/badge.svg)](https://github.com/AdityaNG/kan-gpt/actions/workflows/main.yml)
[![GitHub License](https://img.shields.io/github/license/AdityaNG/kan-gpt)](https://github.com/AdityaNG/kan-gpt/blob/main/LICENSE)

The PyTorch implementation of Generative Pre-trained Transformers (GPTs) using Kolmogorov-Arnold Networks (KANs) for language modeling

## Install it from PyPI

```bash
pip install kan_gpt
```

## Citation

If you find our work useful cite us!

```
@misc{GANESH2024KANGPT,
author = {Aditya Nalgunda Ganesh},
title = {KAN-GPT: The PyTorch implementation of Generative Pre-trained Transformers (GPTs) using Kolmogorov-Arnold Networks (KANs) for language modeling},
year = {2024},
month = {May},
note = {Release 1.0.0, 9th May 2024},
url = {https://github.com/AdityaNG/kan-gpt/}
}
```

## Usage

Refer to the [KAN_GPT.ipynb](https://github.com/AdityaNG/kan-gpt/blob/main/KAN_GPT.ipynb) and [kan_gpt/prompt.py](https://github.com/AdityaNG/kan-gpt/blob/main/kan_gpt/prompt.py) for usage examples. The following is an outline of how to use the model:

```py
from kan_gpt.model import GPT
from transformers import GPT2Tokenizer

model_config = GPT.get_default_config()
model_config.model_type = "gpt2"
model_config.vocab_size = 50257
model_config.block_size = 1024
model = GPT(model_config)

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

prompt = "Bangalore is often described as the "

prompt_encoded = tokenizer.encode(
text=prompt, add_special_tokens=False
)

x = torch.tensor(prompt_encoded).unsqueeze(0)

model.eval()
y = model.generate(x, 50) # sample 50 tokens

result = tokenizer.decode(y[0])

print(result)

# Bangalore is often described as the Silicon Valley of India.
# The city has witnessed rapid growth in the past two decades.....
```

## Setup for Development

```bash
# Download Repo
git clone https://github.com/AdityaNG/kan-gpt
cd kan-gpt
git pull

# Download Dataset
python3 -m kan_gpt.download_dataset --dataset tinyshakespeare
python3 -m kan_gpt.download_dataset --dataset mnist
python3 -m kan_gpt.download_dataset --dataset webtext

# Install dependencies for development
pip install -r requirements.txt
pip install -e .
```

## Train

Use the following dummy script to make sure everything is working as expected
```bash
WANDB_MODE=offline CUDA_VISIBLE_DEVICE="" python3 -m kan_gpt.train --architecture MLP --batch_size 1 --dummy_dataset --device cpu --max_iters 200
WANDB_MODE=offline CUDA_VISIBLE_DEVICE="" python3 -m kan_gpt.train --architecture KAN --batch_size 1 --dummy_dataset --device cpu --max_iters 200
```

Then make use of the training script
```bash
python -m kan_gpt.train
```

## Prompt

You can prompt the model to produce text as follows
```bash
python -m kan_gpt.prompt --prompt "Bangalore is often described as the " --model_path (checkpoint)
```

## Results

We train and compare KAN-GPT with an equivalent MLP-GPT model on the Tiny Shakespeare dataset. We observe that the KAN-GPT performs slightly better than the MLP-GPT. We are looking into further experiments to dive deeper. The results are shown below:

| Metrics | | |
|---------|---------|---------|
| ![results_loss](media/results_loss.png) | ![results_cross_entropy](media/results_cross_entropy.png) | ![results_perplexity](media/results_perplexity.png) |

## TODOs

- [x] Integrate [minGPT](https://github.com/karpathy/minGPT) and [pykan](https://github.com/KindXiaoming/pykan)
- [x] Dataset downloading script for [WebText](https://github.com/openai/gpt-2-output-dataset)
- [x] PyTorch Dataset parser for [WebText](https://github.com/openai/gpt-2-output-dataset)
- [x] PyTorch Dataset parser for [tinyshakespeare](https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt)
- [x] Mini training POC for KAN-GPT
- [x] Integrate KAN training logic from `KAN.train_kan`
- [x] Train a dummy batch w/o any memory issues
- [x] Mini training POC for MLP-GPT
- [x] Train MLP-GPT on the webtext dataset as a baseline
- [x] Train KAN-GPT on the webtext dataset as a baseline
- [x] Metrics comparing KAN-GPT and MLP-GPT
- [x] Auto Save checkpoints
- [x] Auto Save checkpoints to W&B
- [ ] Auto Download model weights from git / huggingface
- [x] W&B hyperparam sweep script
- [x] Script to load checkpoint in interactive mode
- [ ] Reduce requrements.txt constraints
- [ ] Define pydantic model for training and sweep args
- [ ] Pruning the package, get rid of unused code
- [ ] Training script to PyTorch Lighting
- [x] Documentation: `mkdocs gh-deploy`
- [x] Integrate with [efficient-kan](https://github.com/Blealtan/efficient-kan/blob/master/src/efficient_kan/kan.py)
- [x] Test Cases
- [x] KAN: Forward-Backward test
- [x] GPT: Forward-Backward test
- [x] KAN_GPT: Forward-Backward test
- [x] EFFICIENT_KAN: Forward-Backward test

## Development

Read the [CONTRIBUTING.md](https://github.com/AdityaNG/kan-gpt/blob/main/CONTRIBUTING.md) file.

## References

- [minGPT](https://github.com/karpathy/minGPT)
- [pykan](https://github.com/KindXiaoming/pykan)
- [webtext](https://github.com/openai/gpt-2-output-dataset)
- [tinyshakespeare](https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt)