Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Alex-Lekov/AutoML_Alex
State-of-the art Automated Machine Learning python library for Tabular Data
https://github.com/Alex-Lekov/AutoML_Alex
auto-ml automatic-machine-learning automl cross-validation data-science data-science-projects hyperparameter-optimization hyperparameter-tuning machine-learning machine-learning-library machine-learning-models ml model-selection optimisation python sklearn stacking stacking-ensemble xgboost
Last synced: 3 months ago
JSON representation
State-of-the art Automated Machine Learning python library for Tabular Data
- Host: GitHub
- URL: https://github.com/Alex-Lekov/AutoML_Alex
- Owner: Alex-Lekov
- License: mit
- Created: 2020-05-09T06:14:20.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-10-04T01:15:37.000Z (about 1 year ago)
- Last Synced: 2024-07-24T09:12:10.157Z (4 months ago)
- Topics: auto-ml, automatic-machine-learning, automl, cross-validation, data-science, data-science-projects, hyperparameter-optimization, hyperparameter-tuning, machine-learning, machine-learning-library, machine-learning-models, ml, model-selection, optimisation, python, sklearn, stacking, stacking-ensemble, xgboost
- Language: Python
- Homepage:
- Size: 25.9 MB
- Stars: 218
- Watchers: 7
- Forks: 41
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
AutoML Alex
[![Downloads](https://pepy.tech/badge/automl-alex)](https://pepy.tech/project/automl-alex)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/automl-alex)
![PyPI](https://img.shields.io/pypi/v/automl-alex)
[![CodeFactor](https://www.codefactor.io/repository/github/alex-lekov/automl_alex/badge)](https://www.codefactor.io/repository/github/alex-lekov/automl_alex)
[![Telegram](https://img.shields.io/badge/chat-on%20Telegram-2ba2d9.svg)](https://t.me/automlalex)
[![License](https://img.shields.io/badge/license-MIT-blue.svg)](/LICENSE)---
State-of-the art Automated Machine Learning python library for Tabular Data
## Works with Tasks:
- [x] Binary Classification
- [x] Regression
- [ ] Multiclass Classification (in progress...)
### Benchmark Results
The bigger, the better
From [AutoML-Benchmark](https://github.com/Alex-Lekov/AutoML-Benchmark/)### Scheme
# Features
- Automated Data Clean (Auto Clean)
- Automated **Feature Engineering** (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)# Installation
```python
pip install automl-alex
```# Docs
[DocPage](https://alex-lekov.github.io/AutoML_Alex/)# 🚀 Examples
Classifier:
```python
from automl_alex import AutoMLClassifiermodel = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```Regression:
```python
from automl_alex import AutoMLRegressormodel = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
```DataPrepare:
```python
from automl_alex import DataPreparede = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
```Simple Models Wrapper:
```python
from automl_alex import LightGBMClassifiermodel = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
```More examples in the folder ./examples:
- [01_Quick_Start.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/01_Quick_Start.ipynb)
- [02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb)
- [03_Models.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/03_Models.ipynb)
- [04_ModelsReview.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/04_ModelsReview.ipynb)
- [05_BestSingleModel.ipynb](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](http://colab.research.google.com/github/Alex-Lekov/AutoML_Alex/blob/master/examples/05_BestSingleModel.ipynb)
- [Production Docker template](https://github.com/Alex-Lekov/AutoML_Alex/blob/master/examples/prod_sample)# What's inside
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...# Works with Features
- [x] Categorical Features
- [x] Numerical Features
- [x] Binary Features
- [ ] Text
- [ ] Datetime
- [ ] Timeseries
- [ ] Image
# Note
- **With a large dataset, a lot of memory is required!**
Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.# Realtime Dashboard
Works with [optuna-dashboard](https://github.com/optuna/optuna-dashboard)Run
```console
$ optuna-dashboard sqlite:///db.sqlite3
```# Road Map
- [x] Feature Generation
- [x] Save/Load and Predict on New Samples
- [x] Advanced Logging
- [x] Add opt Pruners
- [ ] Docs Site
- [ ] DL Encoders
- [ ] Add More libs (NNs)
- [ ] Multiclass Classification
- [ ] Build pipelines
# Contact
[Telegram Group](https://t.me/automlalex)