Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/AliaksandrSiarohin/video-preprocessing
https://github.com/AliaksandrSiarohin/video-preprocessing
Last synced: about 2 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/AliaksandrSiarohin/video-preprocessing
- Owner: AliaksandrSiarohin
- Created: 2019-01-16T14:33:44.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T01:51:53.000Z (about 2 years ago)
- Last Synced: 2024-08-04T06:03:53.360Z (5 months ago)
- Language: Python
- Size: 620 KB
- Stars: 500
- Watchers: 16
- Forks: 133
- Open Issues: 33
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Human-Video-Generation - Taichi
README
# Video Preprocessing
This repository provides tools for preprocessing videos for TaiChi, VoxCeleb and UvaNemo dataset used in [paper](https://papers.nips.cc/paper/8935-first-order-motion-model-for-image-animation).## Dowloading videos and cropping according to precomputed bounding boxes
1) Instal requirments:
```
pip install -r requirements.txt
```2) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```3) Run script to download videos, there are 2 formats that can be used for storing videos one is .mp4 and another is folder with .png images. While .png images occupy significantly more space, the format is loss-less and have better i/o performance when training.
**Taichi**
```
python load_videos.py --metadata taichi-metadata.csv --format .mp4 --out_folder taichi --workers 8
```
select number of workers based on number of cpu avaliable. Note .png format take aproximatly 80GB.**VoxCeleb**
```
python load_videos.py --metadata vox-metadata.csv --format .mp4 --out_folder vox --workers 8
```
Note .png format take aproximatly 300GB.**UvaNemo**
Since videos is not avaliable on youtube you have to download videos from official [website](https://www.uva-nemo.org/), and run:
```
python load_videos.py --metadata nemo-metadata.csv --format .mp4 --out_folder nemo --workers 8 --video_folder path/to/original/videos
```
Note .png format take aproximatly 18GB.## Preprocessing VoxCeleb dataset
If you need to change cropping strategy for **VoxCeleb** dataset or produce new bounding box annotations folow these steps:
1) Load vox-celeb1(vox-celeb2) annotations:
```
wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox1_test_txt.zip
unzip vox1_test_txt.zipwget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox1_dev_txt.zip
unzip vox1_dev_txt.zip
``````
wget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox2_test_txt.zip
unzip vox2_test_txt.zipwget www.robots.ox.ac.uk/~vgg/data/voxceleb/data/vox2_dev_txt.zip
unzip vox2_dev_txt.zip
```2) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```3) Install face-alignment library:
```
git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install
```4) Install ffmpeg
```
sudo apt-get install ffmpeg
```5) Run preprocessing (assuming 8 gpu, and 5 workers per gpu).
```
python crop_vox.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4 --dataset_version 2
python crop_vox.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4 --dataset_version 1 --data_range 10000-11252
```## Preprocessing TaiChi dataset
If you need to change cropping strategy for **TaiChi** dataset or produce new bounding box annotations folow these steps:1) Download videos based on annotations:
```
python load_videos.py --metadata taichi-metadata.csv --format .mp4 --out_folder taichi --workers 8 --video_folder youtube-taichi --no_crop
```2) Install mask-rcnn benchmark. Follow the instalation guide https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/INSTALL.md
3) Load youtube-dl:
```
wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl
chmod a+rx youtube-dl
```4) Run preprocessing (assuming 8 gpu, and 5 workers per gpu).
```
python crop_taichi.py --workers 40 --device_ids 0,1,2,3,4,5,6,7 --format .mp4
```## Preprocessing Nemo dataset
If you need to change cropping strategy for **Nemo** dataset or produce new bounding box annotations folow these steps:1) Install face-alignment library:
```
git clone https://github.com/1adrianb/face-alignment
cd face-alignment
pip install -r requirements.txt
python setup.py install
```2) Download videos from official [website](https://www.uva-nemo.org/), and run:
```
python crop_nemo.py --in_folder /path/to/videos --out_folder nemo --device_ids 0,1 --workers 8 --format .mp4
```#### Additional notes
Citation:
```
@InProceedings{Siarohin_2019_NeurIPS,
author={Siarohin, Aliaksandr and Lathuilière, Stéphane and Tulyakov, Sergey and Ricci, Elisa and Sebe, Nicu},
title={First Order Motion Model for Image Animation},
booktitle = {Conference on Neural Information Processing Systems (NeurIPS)},
month = {December},
year = {2019}
}
```