Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/AmadeusChan/Awesome-LLM-System-Papers
https://github.com/AmadeusChan/Awesome-LLM-System-Papers
List: Awesome-LLM-System-Papers
Last synced: 29 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/AmadeusChan/Awesome-LLM-System-Papers
- Owner: AmadeusChan
- Created: 2023-03-20T19:35:58.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-09-05T04:57:09.000Z (5 months ago)
- Last Synced: 2025-01-15T03:28:04.818Z (about 1 month ago)
- Size: 84 KB
- Stars: 525
- Watchers: 17
- Forks: 22
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-ai-papers - [Awesome-LLM-System-Papers - production-llm](https://github.com/jihoo-kim/awesome-production-llm)\]\[[Awesome-ML-SYS-Tutorial](https://github.com/zhaochenyang20/Awesome-ML-SYS-Tutorial)\] (NLP / 3. Pretraining)
- awesome-ai-papers - [Awesome-LLM-System-Papers - production-llm](https://github.com/jihoo-kim/awesome-production-llm)\]\[[Awesome-ML-SYS-Tutorial](https://github.com/zhaochenyang20/Awesome-ML-SYS-Tutorial)\] (NLP / 3. Pretraining)
README
# Awesome-LLM-System-Papers
This is a list of (non-comprehensive) LLM system papers maintained by [ALCHEM Lab](https://alchem.cs.purdue.edu/index.html). Welcome to create a pull requst or an issue if we have missed any interesting papers!
## Algorithm-System Co-Design
- Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity (JMLR'21) [link to paper](https://www.jmlr.org/papers/volume23/21-0998/21-0998.pdf)
- Scalable and Efficient MoE Training for Multitask Multilingual Models (arXiv'21) [link to paper](https://arxiv.org/pdf/2109.10465.pdf)
- DeepSpeed-MOE: Advancing Mixture of Experts Inference and Training to Power Next-Generation AI Scale (ICML'22) [link to paper](https://proceedings.mlr.press/v162/rajbhandari22a/rajbhandari22a.pdf)## LLM Inference (Serving) Systems
- Orca: A Distributed Serving System for Transformer-Based Generative Models (OSDI'22) [link to paper](https://www.usenix.org/conference/osdi22/presentation/yu)
- TurboTransformers: An Efficient GPU Serving System For Transformer Models (PPoPP'21) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3437801.3441578)
- PetS: A Unified Framework for Parameter-Efficient Transformers Serving (ATC'22) [link to paper](https://www.usenix.org/system/files/atc22-zhou-zhe.pdf)
- DeepSpeed-inference: enabling efficient inference of transformer models at unprecedented scale (SC'22) [link to paper](https://dl.acm.org/doi/abs/10.5555/3571885.3571946)
- EnergeonAI: An Inference System for 10-100 Billion Parameter Transformer Models (arXiv'22) [link to paper](https://arxiv.org/pdf/2209.02341.pdf)
- PETALS: Collaborative Inference and Fine-tuning of Large Models (NeurIPS'22 Workshop WBRC) [link to paper](https://openreview.net/pdf?id=Ls_NTjgWXZV)
- SpecInfer: Accelerating Generative LLM Serving with Speculative Inference and Token Tree Verification (preprint'23) [link to paper](https://www.cs.cmu.edu/~zhihaoj2/papers/specinfer.pdf)
- Fast Distributed Inference Serving for Large Language Models (arXiv'23) [link to paper](https://arxiv.org/pdf/2305.05920.pdf)
- FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU (ICML'23) [link to paper](https://arxiv.org/pdf/2303.06865.pdf)
- PowerInfer: Fast Large Language Model Serving with a Consumer-grade GPU (preprint'23) [link to paper](https://ipads.se.sjtu.edu.cn/_media/publications/powerinfer-20231219.pdf)
- LLM in a flash: Efficient Large Language Model Inference with Limited Memory (arXiv'23) [link to paper](https://arxiv.org/pdf/2312.11514.pdf)
- An Efficient Sparse Inference Software Accelerator for Transformer-based Language Models on CPUs (arXiv'23) [link to paper](https://arxiv.org/abs/2306.16601)
- Accelerating LLM Inference with Staged Speculative Decoding (arXiv'23) [link to paper](https://arxiv.org/abs/2308.04623)
- Efficient Memory Management for Large Language Model Serving with PagedAttention (SOSP'23) [link to paper](https://arxiv.org/pdf/2309.06180.pdf)
- EdgeMoE: Fast On-Device Inference of MoE-based Large Language Models (arXiv'23) [link to paper](https://arxiv.org/pdf/2308.14352.pdf)
- Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding (arXiv'23) [link to paper](https://arxiv.org/abs/2309.08168)
- S3: Increasing GPU Utilization during Generative Inference for Higher Throughput (arXiv'23) [link to paper](https://arxiv.org/abs/2306.06000)
- Punica: Multi-Tenant LoRA Serving (arXiv'23) [link to paper](https://arxiv.org/pdf/2310.18547.pdf)
- S-LoRA: Serving Thousands of Concurrent LoRA Adapters (arXiv'23) [link to paper](https://arxiv.org/pdf/2311.03285.pdf)
- Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time (ICML'23) [link to paper](https://arxiv.org/pdf/2310.17157.pdf)
- Splitwise: Efficient Generative LLM Inference Using Phase Splitting (arXiv'23, update: ISCA'24) [link to paper](https://arxiv.org/pdf/2311.18677.pdf)
- SARATHI: Efficient LLM Inference by Piggybacking Decodes with Chunked Prefills (arXiv'23) [link to paper](https://arxiv.org/pdf/2308.16369.pdf)
- SuperServe: Fine-Grained Inference Serving for Unpredictable Workloads (arXiv'23) [link to paper](https://arxiv.org/pdf/2312.16733v1.pdf)
- Efficiently Programming Large Language Models using SGLang (arXiv'23) [link to paper](https://arxiv.org/abs/2312.07104)
- SpotServe: Serving Generative Large Language Models on Preemptible Instances (ASPLOS'24) [link to paper](https://arxiv.org/pdf/2311.15566.pdf)
- Multi-Candidate Speculative Decoding (arXiv'24) [link to paper](https://arxiv.org/abs/2401.06706)
- Infinite-LLM: Efficient LLM Service for Long Context with DistAttention and Distributed KVCache (arXiv'24) [link to paper](https://arxiv.org/pdf/2401.02669.pdf)
- Break the Sequential Dependency of LLM Inference Using Lookahead Decoding (arXiv'24) [link to paper](https://arxiv.org/pdf/2402.02057.pdf)
- FASTDECODE: High-Throughput GPU-Efficient LLM Serving using Heterogeneous Pipelines (arXiv'24) [link to paper](https://arxiv.org/pdf/2403.11421.pdf)
- FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning (arXiv'24) [link to paper](https://arxiv.org/pdf/2402.18789.pdf)
- Inference without Interference: Disaggregate LLM Inference for Mixed Downstream Workloads (arXiv'24) [link to paper](https://arxiv.org/pdf/2401.11181.pdf)
- MuxServe: Flexible Multiplexing for Efficient Multiple LLM Serving (arXiv'24) [link to paper](https://arxiv.org/pdf/2404.02015.pdf)
- DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving (arXiv'24) [link to paper](https://arxiv.org/pdf/2401.09670.pdf)
- DeFT: Flash Tree-attention with IO-Awareness for Efficient Tree-search-based LLM Inference (ICLR'24)[link to paper](https://openreview.net/forum?id=HqfLHoX8bR)## On-device LLM Inference (Serving) Systems
- PowerInfer-2: Fast Large Language Model Inference on a Smartphone (arXiv'24) [link to paper](https://arxiv.org/pdf/2406.06282.pdf)
- Empowering 1000 tokens/second on-device LLM prefilling with mllm-NPU (arXiv'24) [link to paper](https://arxiv.org/pdf/2407.05858.pdf)### Profiling and Benchmark Systems
- MELTing point: Mobile Evaluation of Language Transformers (MobiCom'24) [link to paper](https://arxiv.org/pdf/2403.12844.pdf)
- MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases (NeurIPS'24) [link to paper](https://arxiv.org/pdf/2406.10290.pdf)## LLM Training Systems
### Single-GPU Systems
- CRAMMING: Training a Language Model on a Single GPU in One Day (arXiv'22) [link to paper](https://arxiv.org/pdf/2212.14034)
- Easy and Efficient Transformer : Scalable Inference Solution For large NLP model (arXiv'22) [link to paper](https://arxiv.org/pdf/2104.12470.pdf)
- High-throughput Generative Inference of Large Language Models with a Single GPU (arXiv'23) [link to paper](https://arxiv.org/pdf/2303.06865.pdf)
- ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs (arXiv'23) [link to paper](https://arxiv.org/pdf/2210.03052.pdf)### Distributed Systems
- ZeRO: Memory optimizations Toward Training Trillion Parameter Models (SC'20) [link to paper](https://ieeexplore.ieee.org/abstract/document/9355301)
- Megatron-lm: Training multi-billion parameter language models using model parallelism (arXiv'20) [link to paper](https://arxiv.org/pdf/1909.08053.pdf)
- PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models Algorithm (ICML'21) [link to paper](http://proceedings.mlr.press/v139/he21a/he21a.pdf)
- Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM (SC'21) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3458817.3476209?casa_token=u0SaPFr_xwsAAAAA:UdIVbVvdimqGt7Wxk6ntI-BHzRl8JxqhkFdZbrXcqV509CHkq8FwQviI7Fsiw7na15IyYcYFf098SQ)
- TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models (ICML'21) [link to paper](https://danyangzhuo.com/papers/ICML21-TeraPipe.pdf)
- FastMoE: A Fast Mixture-of-Expert Training System (arXiv'21) [link to paper](https://arxiv.org/pdf/2103.13262.pdf)
- Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model (arXiv'22) [link to paper](https://arxiv.org/pdf/2201.11990.pdf)
- Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning (OSDI'22) [link to paper](https://www.usenix.org/system/files/osdi22-zheng-lianmin.pdf)
- LightSeq2: Accelerated Training for Transformer-Based Models on GPUs (SC'22) [link to paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10046070&casa_token=Y7UD4u5ej2AAAAAA:sxe5BGbxS2cG0l2vGg7f7L_RchYiovUzvTFgwLC5zRI96PtEzqGLt0TjOpLFvQW4jb6_y7J3R6U)
- Pathways: Asynchronous Distributed Dataflow for ML (arXiv'22) [link to paper](https://arxiv.org/pdf/2203.12533.pdf)
- FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness (NeurIPS'22) [link to paper](https://proceedings.neurips.cc/paper_files/paper/2022/file/67d57c32e20fd0a7a302cb81d36e40d5-Paper-Conference.pdf)
- Varuna: Scalable, Low-cost Training of Massive Deep Learning Models (EuroSys'22) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3492321.3519584)
- FasterMoE: modeling and optimizing training of large-scale dynamic pre-trained models (PPoPP'22) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3503221.3508418)
- PanGu-Σ: Towards Trillion Parameter Language Model with Sparse Heterogeneous Computing (arXiv'23) [link to paper](https://arxiv.org/abs/2303.10845)
- Mobius: Fine Tuning Large-Scale Models on Commodity GPU Servers (ASPLOS'23) [link to paper](https://dl.acm.org/doi/10.1145/3575693.3575703)
- Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression(ASPLOS'23) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3575693.3575712)
- ZeRO++: Extremely Efficient Collective Communication for Giant Model Training (arXiv'23) [link to paper](https://arxiv.org/pdf/2306.10209.pdf)
- A Hybrid Tensor-Expert-Data Parallelism Approach to Optimize Mixture-of-Experts Training (ICS'23) [link to paper](https://dl.acm.org/doi/abs/10.1145/3577193.3593704)
- BPIPE: Memory-Balanced Pipeline Parallelism for Training Large Language Models (ICML'23) [link to paper](https://openreview.net/pdf?id=HVKmLi1iR4)
- Optimized Network Architectures for Large Language Model Training with Billions of Parameters (arXiv'23) [link to paper](https://arxiv.org/abs/2307.12169)
- SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient (arXiv'23) [link to paper](https://arxiv.org/abs/2301.11913)
- Blockwise Parallel Transformer for Large Context Models (NeurIPS'23) [link to paper](https://arxiv.org/abs/2305.19370)
- Ring Attention with Blockwise Transformers for Near-Infinite Context (arXiv'23) [link to paper](https://arxiv.org/abs/2310.01889)
- DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models (arXiv'23) [link to paper](https://arxiv.org/abs/2309.14509)
- Effective Long-Context Scaling of Foundation Models (arXiv'23) [link to paper](https://arxiv.org/abs/2309.16039)
- GrowLength: Accelerating LLMs Pretraining by Progressively Growing Training Length (arXiv'23) [link to paper](https://arxiv.org/abs/2310.00576)
- LightSeq: Sequence Level Parallelism for Distributed Training of Long Context Transformers (arXiv'23) [link to paper](https://arxiv.org/abs/2310.03294)
- Efficient Streaming Language Models with Attention Sinks (arXiv'23) [link to paper](https://arxiv.org/abs/2309.17453)
- PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management (TPDS'23) [link to paper](https://arxiv.org/abs/2108.05818)## General MLSys-Related Techniques (Incomplete)
- Efficient GPU Spatial-Temporal Multitasking (TPDS'14) [link to paper](https://ieeexplore.ieee.org/document/6777559)
- Enabling preemptive multiprogramming on GPUs (ISCA'14) [link to paper](https://ieeexplore.ieee.org/document/6853208)
- Chimera: Collaborative Preemption for Multitasking on a Shared GPU (ASPLOS'15) [link to paper](https://cccp.eecs.umich.edu/papers/jasonjk-asplos15.pdf)
- Simultaneous Multikernel GPU: Multi-tasking Throughput Processors via Fine-Grained Sharing (HPCA'16) [link to paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7446078&casa_token=vxsr7PVfmXgAAAAA:50JiSZDt8Xzg0lr5tIMu6nlyIRpQawD4HVePmPI-pBOHylszpzBlwPgLEeAPhOhl6cXrHLGhNrg&tag=1)
- FLEP: Enabling Flexible and Efficient Preemption on GPUs (ASPLOS'17) [link to paper](https://dl.acm.org/doi/10.1145/3037697.3037742)
- Dynamic Resource Management for Efficient Utilization of Multitasking GPUs (ASPLOS'17) [link to paper](https://dl.acm.org/doi/10.1145/3037697.3037707)
- Mesh-TensorFlow: Deep Learning for Supercomputers (NeurIPS'18) [link to paper](https://proceedings.neurips.cc/paper_files/paper/2018/file/3a37abdeefe1dab1b30f7c5c7e581b93-Paper.pdf)
- PipeDream: Fast and Efficient Pipeline Parallel DNN Training (SOSP'19) [link to paper](https://dl.acm.org/doi/10.1145/3341301.3359646)
- GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism (NeurIPS'19) [link to paper](https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf)
- PipeSwitch: Fast Pipelined Context Switching for Deep Learning Applications (OSDI'20) [link to paper](https://www.usenix.org/system/files/osdi20-bai.pdf)
- Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences (OSDI'22) [link to paper](https://www.usenix.org/conference/osdi22/presentation/han)
- Overlap Communication with Dependent Computation via Decomposition in Large Deep Learning Models (ASPLOS'23) [link to paper](https://dl.acm.org/doi/pdf/10.1145/3567955.3567959)
- AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving (OSDI'23) [link to paper](https://www.usenix.org/system/files/osdi23-li-zhuohan.pdf)
- Benchmarking and Dissecting the Nvidia Hopper GPU Architecture (IPDPS'24) [link to paper](https://arxiv.org/pdf/2402.13499v1.pdf)## LLM Algorithm Papers Recommended for System Researchers
- Attention is all you need (NeurIPS'17) [link to paper](https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf)
- Language Models are Unsupervised Multitask Learners (preprint from OpenAI) [link to paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- Improving Language Understanding by Generative Pretraining (preprint from OpenAI) [link to paper](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
- Language Models are Few-Shot Learners (NeurIPS'20) [link to paper](https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf)
- GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding (ICLR'20) [link to paper](https://openreview.net/forum?id=qrwe7XHTmYb)
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (JMLR'20) [link to paper](https://jmlr.org/papers/volume21/20-074/20-074.pdf)
- Multitask Prompted Training Enables Zero-Shot Task Generalization (ICLR'22) [link to paper](https://openreview.net/pdf?id=9Vrb9D0WI4)
- Finetuned Language Models are Zero-Shot Learners (ICLR'22) [link to paper](https://openreview.net/forum?id=gEZrGCozdqR)
- GLaM: Efficient Scaling of Language Models with Mixture-of-Experts (ICML'22) [link to paper](https://scholar.google.com/scholar?hl=en&as_sdt=0%2C15&q=GLaM%3A+Efficient+Scaling+of+Language+Models+with+Mixture-of-Experts&btnG=)
- Training language models to follow instructions with human feedback (NeurIPS'22) [link to paper](https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf)
- LaMDA: Language Models for Dialog Applications (arXiv'22) [link to paper](https://arxiv.org/pdf/2201.08239.pdf)
- PaLM: Scaling Language Modeling with Pathways (arXiv'22) [link to paper](https://arxiv.org/pdf/2204.02311.pdf)
- Lora: Low-rank adaptation of large language models (ICLR'22) [link to paper](https://openreview.net/forum?id=nZeVKeeFYf9)
- OPT: Open Pre-trained Transformer Language Models (arXiv'22) [link to paper](https://arxiv.org/pdf/2205.01068.pdf?fbclid=IwAR1_0YiQKgxIsy8unzoLvL9E2OA41_kze-H0YvhoCzIQUp_gk-MR9dUs2ZE)
- Holistic Evaluation of Language Models (arXiv'22) [link to paper](https://arxiv.org/pdf/2211.09110.pdf)
- BLOOM: A 176B-Parameter Open-Access Multilingual Language Model (arXiv'23) [link to paper](https://arxiv.org/pdf/2211.05100.pdf)
- LLaMA: Open and Efficient Foundation Language Models (arXiv'23) [link to paper](https://scontent-atl3-1.xx.fbcdn.net/v/t39.8562-6/333078981_693988129081760_4712707815225756708_n.pdf?_nc_cat=108&ccb=1-7&_nc_sid=ad8a9d&_nc_ohc=fskqjIsP1vwAX-oLQNg&_nc_ht=scontent-atl3-1.xx&oh=00_AfBWZMuYRZYFd8oGUIxSdjKcG-EhmQodKMs7-M_IyuYlPw&oe=64216DE2)
- DeepMind: Training Compute Optimal Large Language Models (preprint from DeepMind) [link to paper](https://arxiv.org/pdf/2203.15556.pdf)
- Scaling Laws for Neural Language Models (preprint) [link to paper](https://arxiv.org/pdf/2001.08361.pdf)
- Scaling Language Models: Methods, Analysis & Insights from Training Gopher (preprint from DeepMind) [link to paper](https://arxiv.org/pdf/2112.11446.pdf)
- LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models (arXiv'23) [link to paper](https://arxiv.org/pdf/2304.01933.pdf)
- RWKV: Reinventing RNNs for the Transformer Era (arXiv'23) [link to paper](https://arxiv.org/abs/2305.13048)
- LongNet: Scaling Transformers to 1,000,000,000 (arXiv'23)[link to paper](https://arxiv.org/abs/2307.02486)
- SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference (arXiv'23)[link to paper](https://arxiv.org/abs//2307.02628)
- FlashAttention2: Faster Attention with Better Parallelism and Work Partitioning (arXiv'23)[link to paper](https://tridao.me/publications/flash2/flash2.pdf)
- Retentive Network: A Successor to Transformers for Large Language Models (arXiv'23)[link to paper](https://arxiv.org/abs/2307.08621)
- TransNormer: Scaling TransNormer to 175 Billion Parameters (arXiv'23)[link to paper](https://arxiv.org/abs/2307.14995)
- Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding (arXiv'23)[link to paper](https://arxiv.org/abs/2307.15337)
- From Sparse to Soft Mixture of Experts (arXiv'23)[link to paper](https://arxiv.org/abs/2308.00951)
- One Wide Feedforward is All You Need (arXiv'23)[link to paper](https://arxiv.org/abs/2309.01826)
- Gated recurrent neural networks discover attention (arXiv'23)[link to paper](https://arxiv.org/abs/2309.01775)
- Pushing Mixture of Experts to the Limit: Extremely Parameter Efficient MoE for Instruction Tuning (arXiv'23)[link to paper](https://arxiv.org/abs/2309.05444)
- Scaling Laws for Sparsely-Connected Foundation Models (arXiv'23)[link to paper](https://arxiv.org/abs/2309.08520)
- Sorted LLaMA: Unlocking the Potential of Intermediate Layers of Large Language Models for Dynamic Inference Using Sorted Fine-Tuning (SoFT) (arXiv'23)[link to paper](https://arxiv.org/abs/2309.08968)
- LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models (arXiv'23)[link to paper](https://arxiv.org/abs/2309.12307)
- PoSE: Efficient Context Window Extension of LLMs via Positional Skip-wise Training (arXiv'23)[link to paper](https://arxiv.org/abs/2309.10400)
- Retrieval meets Long Context Large Language Models (arXiv'23)[link to paper](https://arxiv.org/abs/2310.03025)
- HyperAttention: Long-context Attention in Near-Linear Time (arXiv'23)[link to paper](https://arxiv.org/abs/2310.05869)## Survyes
- A Survey of Large Language Models (arXiv'23) [link to paper](https://arxiv.org/abs/2303.18223)
- Challenges and Applications of Large Language Models (arXiv'23)[link to paper](https://arxiv.org/abs/2307.10169)
- FLM-101B: An Open LLM and How to Train It with $100K Budget (arXiv'23)[link to paper](https://arxiv.org/abs/2309.03852)
- Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems (arXiv'23)[link to paper](https://arxiv.org/pdf/2312.15234.pdf)## Awesome Open-Sourced LLMSys Projects
- [vLLM](https://github.com/vllm-project/vllm)
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- [DeepSpeed](https://github.com/microsoft/DeepSpeed)
- [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
- [SGLang](https://github.com/sgl-project/sglang/tree/main)
- [TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM)
- [MLC-LLM](https://github.com/mlc-ai/mlc-llm)## Other Useful Resources
- [FasterTransformer](https://on-demand.gputechconf.com/gtc-cn/2019/pdf/CN9468/presentation.pdf)
- [An Awesome MLSys Course](https://www.youtube.com/@deeplearningsystemscourse1116)
- [An Awesome Efficient ML Course](https://www.youtube.com/playlist?list=PL80kAHvQbh-pT4lCkDT53zT8DKmhE0idB)
- [An Awesome ML textbook](https://d2l.ai/)
- [An Awesome Handbook for Efficient GPU Programming](https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html)