An open API service indexing awesome lists of open source software.

https://github.com/Aquila-Network/AquilaJS

JavaScript client library to access Aquila Network Neural Search Engine.
https://github.com/Aquila-Network/AquilaJS

neural-search personal-search search-engine vector-search-engine

Last synced: 5 months ago
JSON representation

JavaScript client library to access Aquila Network Neural Search Engine.

Awesome Lists containing this project

README

          



Aquila Network Logo







Aquila JS





Javascript client to access Aquila Network Neural Search Engine




Here is a bird's eye view of where Aquila Client Libraries fit in the entire ecosystem:


Aquila client libraries


## Connect to Database and Hub
```ts
import { AquilaClient, Wallet, Db, Hub } from 'aquila-js';

const wallet = new Wallet('DB_PRIVATE_KEY_PATH-HERE');
const dbUrl = 'DB_URL-HERE';
const dbPort = 'DB_PORT--HERE';
const hubWallet = new Wallet('HUB_PRIVATE_KEY_PATH-HERE');
const hubUrl = 'HUB_URL-HERE';
const hubPort = 'HUB_PORT-HERE';

// connecting to aquila db server
AquilaClient.getDbServer(dbUrl, dbPort, wallet).then(db => {
// connected
});
// connecting to aquila hub server
AquilaClient.getHubServer(hubUrl, hubPort, hubWallet).then(hub => {
// connected
});
```

## Create Database

```ts
const schema: Schema = {
description: "description of db",
unique: "r8and0mse---",
encoder: "ftxt:https://encoder-url",
codelen: 500,
metadata: {
"key": "value",
}
};
db.createDatabase(schema).then(dbName => {
// done
})
hub.createDatabase(schema).then(dbNameHub => {
// done
})
```

## Create Document

```ts
const dbName = 'db-name';
const data = ['Amazon', 'Google'];
const generatedCode = hub.compressDocument(dbName, data).then((generatedCode: as number[][]) => {
const docs: Document[] = [
{
metadata: {
name: "name test",
age: 20
},
code: generatedCode[0],
},{
metadata: {
name: "name2 test",
age: 32
},
code: generatedCode[1],
}
];
return db.createDocuments(dbName, docs)
}).then(docs => {
// succes
});

```

## Search Documents

```ts
const searchData = [[0.06443286, 0.106639 , 0.81865615]];
const resultCount = 10;
db.searchKDocuments(dbName[0], searchData, resultCount).then(result => {
// success
});
```

## Delete Document

```ts
db.deleteDocuments(dbName[0], deleteIds).then(result => {
// success
});
```