Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Aquila-Network/AquilaPy

Python client library to access Aquila Network Neural Search Engine
https://github.com/Aquila-Network/AquilaPy

aquila-network neural-search personal-search python-client vector-search-engine

Last synced: about 1 month ago
JSON representation

Python client library to access Aquila Network Neural Search Engine

Awesome Lists containing this project

README

        



Aquila Network Logo







Aquila Py





Python client to access Aquila Network Neural Search Engine




Here is a bird's eye view of where Aquila Client Libraries fit in the entire ecosystem:


Aquila client libraries


#### install

`pip install aquilapy`

#### Tutorial

```python
from aquilapy import Wallet, DB, Hub
import numpy as np
import time

# Create a wallet instance from private key
wallet = Wallet("private_unencrypted.pem")

host = "http://127.0.0.1"

# Connect to Aquila DB instance
db = DB(host, "5001", wallet)

# Connect to Aquila Hub instance
hub = Hub(host, "5002", wallet)

# Schema definition to be used
schema_def = {
"description": "this is my database",
"unique": "r8and0mseEd901",
"encoder": "strn:msmarco-distilbert-base-tas-b",
"codelen": 768,
"metadata": {
"name": "string",
"age": "number"
}
}

# Craete a database with the schema definition provided
db_name = db.create_database(schema_def)

# Craete a database with the schema definition provided
db_name_ = hub.create_database(schema_def)

print(db_name, db_name_)

# Generate encodings
texts = ["Amazon", "Google"]
compression = hub.compress_documents(db_name, texts)
print(compression)

# Prepare documents to be inserted
docs = [{
"metadata": {
"name":"name1",
"age": 20
},
"code": compression[0]
}, {
"metadata": {
"name":"name2",
"age": 30
},
"code": compression[1]
}]

# Insert documents
dids = db.insert_documents(db_name, docs)

print(dids)

# Delete some documents
dids = db.delete_documents(db_name, dids)

print(dids)

# Perform a similarity search operation
matrix = np.random.rand(1, 25).tolist()

time.sleep(5)

docs, dists = db.search_k_documents(db_name, matrix, 10)

print(len(docs[0]), len(dists[0]))
```

created with ❤️ a-mma.indic (a_മ്മ)