Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Aquila-Network/AquilaPy
Python client library to access Aquila Network Neural Search Engine
https://github.com/Aquila-Network/AquilaPy
aquila-network neural-search personal-search python-client vector-search-engine
Last synced: about 1 month ago
JSON representation
Python client library to access Aquila Network Neural Search Engine
- Host: GitHub
- URL: https://github.com/Aquila-Network/AquilaPy
- Owner: Aquila-Network
- License: mit
- Created: 2020-12-14T13:20:24.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2022-01-13T08:10:52.000Z (almost 3 years ago)
- Last Synced: 2024-10-07T13:37:37.328Z (3 months ago)
- Topics: aquila-network, neural-search, personal-search, python-client, vector-search-engine
- Language: Python
- Homepage: https://aquila.network
- Size: 34.2 KB
- Stars: 3
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Here is a bird's eye view of where Aquila Client Libraries fit in the entire ecosystem:
#### install
`pip install aquilapy`
#### Tutorial
```python
from aquilapy import Wallet, DB, Hub
import numpy as np
import time# Create a wallet instance from private key
wallet = Wallet("private_unencrypted.pem")host = "http://127.0.0.1"
# Connect to Aquila DB instance
db = DB(host, "5001", wallet)# Connect to Aquila Hub instance
hub = Hub(host, "5002", wallet)# Schema definition to be used
schema_def = {
"description": "this is my database",
"unique": "r8and0mseEd901",
"encoder": "strn:msmarco-distilbert-base-tas-b",
"codelen": 768,
"metadata": {
"name": "string",
"age": "number"
}
}# Craete a database with the schema definition provided
db_name = db.create_database(schema_def)# Craete a database with the schema definition provided
db_name_ = hub.create_database(schema_def)print(db_name, db_name_)
# Generate encodings
texts = ["Amazon", "Google"]
compression = hub.compress_documents(db_name, texts)
print(compression)# Prepare documents to be inserted
docs = [{
"metadata": {
"name":"name1",
"age": 20
},
"code": compression[0]
}, {
"metadata": {
"name":"name2",
"age": 30
},
"code": compression[1]
}]# Insert documents
dids = db.insert_documents(db_name, docs)print(dids)
# Delete some documents
dids = db.delete_documents(db_name, dids)print(dids)
# Perform a similarity search operation
matrix = np.random.rand(1, 25).tolist()time.sleep(5)
docs, dists = db.search_k_documents(db_name, matrix, 10)
print(len(docs[0]), len(dists[0]))
```created with ❤️ a-mma.indic (a_മ്മ)