Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Arnie0426/FastLDA
https://github.com/Arnie0426/FastLDA
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/Arnie0426/FastLDA
- Owner: Arnie0426
- License: mit
- Created: 2018-02-10T20:19:26.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2019-04-23T04:50:40.000Z (over 5 years ago)
- Last Synced: 2024-08-01T00:38:29.679Z (6 months ago)
- Language: C++
- Size: 2.49 MB
- Stars: 17
- Watchers: 2
- Forks: 6
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-topic-models - FastLDA - C++ implementation of LDA [:page_facing_up:](https://dl.acm.org/doi/pdf/10.1145/1401890.1401960) (Models / Latent Dirichlet Allocation (LDA) [:page_facing_up:](https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf))
README
# FastLDA -- A minimal and fast implementation of Latent Dirichlet Allocation
## Still a work in progress, but currently fully usable!
## Prerequisites
**On Unix (Linux, OS X)**
* A compiler with C++11 support
* CMake >= 2.8.12**On Windows**
* Visual Studio 2015 (required for all Python versions, see notes below)
* CMake >= 3.1## Installation
### Building from source
1. Fork/clone this repo.
2. In fastlda/ please run
```bash
git submodule init
git submodule update
pip install --upgrade . # recommend doing this in a virtualenv
```
This should install all the dependencies needed.3. Run
```bash
python src/python/lda_example.py
```
for an end-to-end LDA run (from training to inference using NIPS dataset from https://archive.ics.uci.edu/ml/datasets/bag+of+words).### Alternatives
- [ ] Pypi version soon to come!
## Usage
A Python class has been exposed with all the relevant training/inference functions.
For an example, see: [this simple example](https://github.com/Arnie0426/FastLDA/blob/master/src/python/lda_example.py#L26-L51)
## License
MIT
This code is written in C++ with python modules exposed using pybind11.