Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/AstraZeneca/awesome-drug-pair-scoring

Readings for "A Unified View of Relational Deep Learning for Drug Pair Scoring." (IJCAI 2022)
https://github.com/AstraZeneca/awesome-drug-pair-scoring

List: awesome-drug-pair-scoring

chemistry ddi decagon deep-chemistry deep-learning drug drug-combination drug-design drug-drug-interaction drug-repurposing drug-synergy drug-target-interactions gcn gnn graph-neural-network knowledge-graph machine-learning polypharmacy relational-learning synergy-prediction

Last synced: 2 months ago
JSON representation

Readings for "A Unified View of Relational Deep Learning for Drug Pair Scoring." (IJCAI 2022)

Awesome Lists containing this project

README

        

# Awesome Drug Pair Scoring
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
![Maturity level-0](https://img.shields.io/badge/Maturity%20Level-ML--0-red)



## The Survey Paper

This repository accompanies our survey paper [A Unified View of Relational Deep Learning for Drug Pair Scoring](https://arxiv.org/abs/2111.02916).

If you find the survey or this repository useful in your research, please consider citing our paper:

```bibtex
@inproceedings{pairscoring,
title = {A Unified View of Relational Deep Learning for Drug Pair Scoring},
author = {Rozemberczki, Benedek and Bonner, Stephen and Nikolov, Andriy and Ughetto, Michaël and Nilsson, Sebastian and Papa, Eliseo},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
pages = {5564--5571},
year = {2022},
}
```
--------------------------------------------------------------------------------

## Contents

1. [High Level Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/high_level.md)
2. [Low Level Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/low_level.md)
3. [Hierarchical Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/hierarchical.md)
4. [Datasets](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/dataset.md)
5. [Related Survey Papers](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/survey.md)

--------------------------------------------------------------------------------

**License**

- [Apache 2.0](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/LICENSE)