Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/AstraZeneca/awesome-drug-pair-scoring
Readings for "A Unified View of Relational Deep Learning for Drug Pair Scoring." (IJCAI 2022)
https://github.com/AstraZeneca/awesome-drug-pair-scoring
List: awesome-drug-pair-scoring
chemistry ddi decagon deep-chemistry deep-learning drug drug-combination drug-design drug-drug-interaction drug-repurposing drug-synergy drug-target-interactions gcn gnn graph-neural-network knowledge-graph machine-learning polypharmacy relational-learning synergy-prediction
Last synced: 2 months ago
JSON representation
Readings for "A Unified View of Relational Deep Learning for Drug Pair Scoring." (IJCAI 2022)
- Host: GitHub
- URL: https://github.com/AstraZeneca/awesome-drug-pair-scoring
- Owner: AstraZeneca
- License: apache-2.0
- Created: 2021-03-28T22:29:52.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2022-08-07T17:10:49.000Z (over 2 years ago)
- Last Synced: 2024-04-14T10:50:28.847Z (9 months ago)
- Topics: chemistry, ddi, decagon, deep-chemistry, deep-learning, drug, drug-combination, drug-design, drug-drug-interaction, drug-repurposing, drug-synergy, drug-target-interactions, gcn, gnn, graph-neural-network, knowledge-graph, machine-learning, polypharmacy, relational-learning, synergy-prediction
- Homepage:
- Size: 1.47 MB
- Stars: 86
- Watchers: 12
- Forks: 14
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- top-pharma50 - **AstraZeneca/awesome-drug-pair-scoring** - chemistry`, `deep-learning`, `drug`, `drug-combination`, `drug-design`, `drug-drug-interaction`, `drug-repurposing`, `drug-synergy`, `drug-target-interactions`, `gcn`, `gnn`, `graph-neural-network`, `knowledge-graph`, `machine-learning`, `polypharmacy`, `relational-learning`, `synergy-prediction`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 86 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 14 <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> Apache License 2.0 <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2022-08-07 17:10:49 | (Ranked by starred repositories)
- top-pharma50 - **AstraZeneca/awesome-drug-pair-scoring** - chemistry`, `deep-learning`, `drug`, `drug-combination`, `drug-design`, `drug-drug-interaction`, `drug-repurposing`, `drug-synergy`, `drug-target-interactions`, `gcn`, `gnn`, `graph-neural-network`, `knowledge-graph`, `machine-learning`, `polypharmacy`, `relational-learning`, `synergy-prediction`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 86 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 14 <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> Apache License 2.0 <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2022-08-07 17:10:49 | (Ranked by starred repositories)
- awesome-chemistry - Awesome Drug Pair Scoring - Readings for "A Unified View of Relational Deep Learning for Drug Pair Scoring." (Awesome Chemistry Repositories in Github)
README
# Awesome Drug Pair Scoring
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
![Maturity level-0](https://img.shields.io/badge/Maturity%20Level-ML--0-red)
## The Survey Paper
This repository accompanies our survey paper [A Unified View of Relational Deep Learning for Drug Pair Scoring](https://arxiv.org/abs/2111.02916).
If you find the survey or this repository useful in your research, please consider citing our paper:
```bibtex
@inproceedings{pairscoring,
title = {A Unified View of Relational Deep Learning for Drug Pair Scoring},
author = {Rozemberczki, Benedek and Bonner, Stephen and Nikolov, Andriy and Ughetto, Michaël and Nilsson, Sebastian and Papa, Eliseo},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
pages = {5564--5571},
year = {2022},
}
```
--------------------------------------------------------------------------------## Contents
1. [High Level Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/high_level.md)
2. [Low Level Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/low_level.md)
3. [Hierarchical Models](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/hierarchical.md)
4. [Datasets](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/dataset.md)
5. [Related Survey Papers](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/chapters/survey.md)--------------------------------------------------------------------------------
**License**
- [Apache 2.0](https://github.com/AstraZeneca/polypharmacy-ddi-synergy-survey/blob/master/LICENSE)