Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/AstraZeneca/awesome-shapley-value

Reading list for "The Shapley Value in Machine Learning" (JCAI 2022)
https://github.com/AstraZeneca/awesome-shapley-value

List: awesome-shapley-value

artificial-intelligence data-science deep-learning explainability explainable explainable-ai explainable-artificial-intelligence explainable-ml lime machine-learning owen-value shap shapley shapley-additive-explanations shapley-decomposition shapley-q-value shapley-value xai

Last synced: about 2 months ago
JSON representation

Reading list for "The Shapley Value in Machine Learning" (JCAI 2022)

Awesome Lists containing this project

README

        

# Awesome Shapley Value
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
![Maturity level-0](https://img.shields.io/badge/Maturity%20Level-ML--0-red)



## The Survey Paper

This repository accompanies our survey paper [The Shapley Value in Machine Learning](https://arxiv.org/abs/2202.05594).

If you find the survey or this repository useful in your research, please consider citing our paper:

```bibtex
@inproceedings{shapleysurvey,
title = {The Shapley Value in Machine Learning},
author = {Rozemberczki, Benedek and Watson, Lauren and Bayer, Péter and Yang, Hao-Tsung and Kiss, Olivér and Nilsson, Sebastian and Sarkar, Rik},
booktitle = {Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, {IJCAI-22}},
publisher = {International Joint Conferences on Artificial Intelligence Organization},
pages = {5572--5579},
year = {2022},
}

```
--------------------------------------------------------------------------------

## Contents

1. [Game Theory Fundamentals](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/fundamentals.md)
2. [Approximations](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/approximations.md)
3. [Feature Selection](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/feature_selection.md)
4. [Explainability](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/explainability.md)
5. [Data Valuation](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/data_valuation.md)
6. [Ensemble Selection](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/ensemble_selection.md)
7. [Federated Learning](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/federated_learning.md)
8. [Reinforcement Learning](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/multi_agent_reinforcement_learning.md)
9. [Miscellaneous](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/chapters/miscellaneous.md)

--------------------------------------------------------------------------------

**License**

- [Apache 2.0](https://github.com/AstraZeneca/awesome-shapley-value/blob/master/LICENSE)