An open API service indexing awesome lists of open source software.

https://github.com/Attention-Refocusing/attention-refocusing


https://github.com/Attention-Refocusing/attention-refocusing

Last synced: 6 months ago
JSON representation

Awesome Lists containing this project

README

          

# Attention Refocusing

[[Website](https://attention-refocusing.github.io)][[Demo](https://huggingface.co/spaces/attention-refocusing/Attention-refocusing)]

This is the official implementation of the paper "Grounded Text-to-Image Synthesis with Attention Refocusing"

https://github.com/Attention-Refocusing/attention-refocusing/assets/135548632/23195e0c-b7f9-4abb-8903-f3601a5a2590

## Setup
```bash
conda create --name ldm_layout python==3.8.0
conda activate ldm_layout
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
pip install -r requirements.txt
pip install git+https://github.com/CompVis/taming-transformers.git
pip install git+https://github.com/openai/CLIP.git
```
## Inference

![Teaser figure](figures/teaser.png)

Download the model [GLIGEN](https://huggingface.co/gligen/gligen-generation-text-box/blob/main/diffusion_pytorch_model.bin) and put them in `gligen_checkpoints`

Run with the prompts in HRS/Drawbench prompts :
```
python guide_gligen.py --ckpt [model_checkpoint] --file_save [save_path] \
--type [category] --box_pickle [saved_boxes] --use_gpt4
```
Where

- `--ckpt`: Path to the GLIGEN checkpoint
- `--file_save`: Path to save the generated images
- `--type`: The category to test (options include counting, spatial, color, size)
- `--box_pickle`: Path to save the generated layout from GPT-4
- `--use_gpt4`: Whether to use GPT-4 to generate the layout. If you're using GPT-4, set your GPT-4 API key as follows:
```bash
export OPENAI_API_KEY='your-api-key'
```
For instance, to generate images according to the layouts and prompts of the counting category:
```bash
python guide_gligen.py --ckpt gligen_checkpoints/diffusion_pytorch_model.bin --file_save counting_500 \
--type counting --box_pickle ../data_evaluate_LLM/gpt_generated_box/counting.p
```
To run with user input text prompts:
```bash
export OPENAI_API_KEY='your-api-key'
python inference.py --ckpt gligen_checkpoints/diffusion_pytorch_model.bin
```
We provide generated layout from GPT4 for HRS benchmark in the [HRS boxes](data_evaluate_LLM/gpt_generated_box), [DrawBench boxes](data_evaluate_LLM/gpt_generated_box_drawbench)
We also provide generated images from GLIGEN, and other baselines including Stable Diffusion, Attend-and-excite, MultiDiffusion, Layout-guidance, GLIGEN and ours [here](https://drive.google.com/drive/folders/1t9LNoVppVsJG9B2LcvXF-4GMVXucbvlS?usp=sharing)

## Evaluation
Set up the environment, download detector models, and run evaluation for each category, see the [evaluation](data_evaluate_LLM/eval_metrics/README.md).

## Attention-refocusing with other baselines
[ControlNet + attention-refocusing](https://github.com/Attention-Refocusing/controlnet_attention)
## Acknowledgments

This project is built on the following resources:

- [**GLIGEN**](https://github.com/gligen/GLIGEN): Our code is built upon the foundational work provided by GLIGEN.

- [**HRS**](https://github.com/eslambakr/HRS_benchmark): The evaluation component of our project has been adopted from HRS.