Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/BigDeviltjj/mxnet-cornernet
Reproduce of CornerNet
https://github.com/BigDeviltjj/mxnet-cornernet
Last synced: 2 months ago
JSON representation
Reproduce of CornerNet
- Host: GitHub
- URL: https://github.com/BigDeviltjj/mxnet-cornernet
- Owner: BigDeviltjj
- Created: 2018-10-19T01:20:04.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-02-28T08:42:46.000Z (almost 6 years ago)
- Last Synced: 2024-08-01T22:40:23.099Z (5 months ago)
- Language: Cuda
- Homepage:
- Size: 13.6 MB
- Stars: 22
- Watchers: 3
- Forks: 1
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-MXNet - CornerNet
README
## CornerNet
Reproduce of [Cornernet](https://arxiv.org/pdf/1808.01244v1.pdf)
The original pytorch implementation repository is [here](https://github.com/princeton-vl/CornerNet)
## Requirements
* You will need python modules: cv2, matplotlib and numpy.
* To compile corner pooling layer, yo need to install mxnet 1.3.0, then put the files in cxx_operator into src/operator/nn/ in mxnet source code and compile it, then run
```
cd ${YOUR_MXNET_ROOT}
export PYTHONPATH=$(pwd)/lib/libmxnet.so:${PYTHONPATH}
```to make sure you import the correct mxnet library.
Alternatively, you can uncomment line 92 and 93 and comment line 94, 95 in symbols/cornernet.py to use python implementation of cornerpooling layer, which would be much slower.
* run init.sh to compile nms and pycocotools
## Demo results
![demo1](https://github.com/BigDeviltjj/mxnet-cornernet/blob/master/images/image_0000.jpg)
![demo2](https://github.com/BigDeviltjj/mxnet-cornernet/blob/master/images/image_0084.jpg)
## mAP
| Model | Training data | Test data | mAP |
|:-----------------:|:----------------:|:---------:|:----:|
| [CornerNet_coco_511x511](https://drive.google.com/drive/folders/1kPZaK4bRwzVuyij_uC0_niupw-VlLmcV) | train2014+valminusminival2014| minival2014| 38.9|## TRAIN
You need to put the coco image files in date.
You can change the batch_size in config/cfg.py according to your gpu number and their computation abilies, but make sure that batch_size number is proportional to the number of gpus.
```
python train.py --gpus 0,1
```## TEST
Download the compressed model from [CornerNet_coco_511x511](https://drive.google.com/drive/folders/1kPZaK4bRwzVuyij_uC0_niupw-VlLmcV) and unzip it then put it in model/, then run
```
python test.py --prefix model/cornernet --epoch 100 --gpus 0
```if you want to visualize the test results:
```
python test.py --prefix model/cornernet --epoch 100 --gpus 0 --debug True
```images will be saved in images/