Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Blaizzy/mlx-vlm
MLX-VLM is a package for running Vision LLMs locally on your Mac using MLX.
https://github.com/Blaizzy/mlx-vlm
apple-silicon florence2 idefics llava llm local-ai mlx molmo paligemma pixtral vision-framework vision-language-model vision-transformer
Last synced: about 2 months ago
JSON representation
MLX-VLM is a package for running Vision LLMs locally on your Mac using MLX.
- Host: GitHub
- URL: https://github.com/Blaizzy/mlx-vlm
- Owner: Blaizzy
- License: mit
- Created: 2024-04-16T15:10:12.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-11-23T15:15:32.000Z (about 2 months ago)
- Last Synced: 2024-11-23T15:37:57.695Z (about 2 months ago)
- Topics: apple-silicon, florence2, idefics, llava, llm, local-ai, mlx, molmo, paligemma, pixtral, vision-framework, vision-language-model, vision-transformer
- Language: Python
- Homepage:
- Size: 6.51 MB
- Stars: 505
- Watchers: 6
- Forks: 45
- Open Issues: 24
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome_ai_agents - Mlx-Vlm - MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX. (Building / LLM Models)
- awesome_ai_agents - Mlx-Vlm - MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX. (Building / LLM Models)
README
# MLX-VLM
MLX-VLM is a package for inference and fine-tuning of Vision Language Models (VLMs) on your Mac using MLX.
## Table of Contents
- [Installation](#installation)
- [Usage](#usage)
- [Command Line Interface (CLI)](#command-line-interface-cli)
- [Chat UI with Gradio](#chat-ui-with-gradio)
- [Python Script](#python-script)
- [Multi-Image Chat Support](#multi-image-chat-support)
- [Supported Models](#supported-models)
- [Usage Examples](#usage-examples)
- [Fine-tuning](#fine-tuning)## Installation
The easiest way to get started is to install the `mlx-vlm` package using pip:
```sh
pip install mlx-vlm
```## Usage
### Command Line Interface (CLI)
Generate output from a model using the CLI:
```sh
python -m mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --temp 0.0 --image http://images.cocodataset.org/val2017/000000039769.jpg
```### Chat UI with Gradio
Launch a chat interface using Gradio:
```sh
python -m mlx_vlm.chat_ui --model mlx-community/Qwen2-VL-2B-Instruct-4bit
```### Python Script
Here's an example of how to use MLX-VLM in a Python script:
```python
import mlx.core as mx
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_config# Load the model
model_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = load_config(model_path)# Prepare input
image = ["http://images.cocodataset.org/val2017/000000039769.jpg"]
prompt = "Describe this image."# Apply chat template
formatted_prompt = apply_chat_template(
processor, config, prompt, num_images=len(image)
)# Generate output
output = generate(model, processor, image, formatted_prompt, verbose=False)
print(output)
```## Multi-Image Chat Support
MLX-VLM supports analyzing multiple images simultaneously with select models. This feature enables more complex visual reasoning tasks and comprehensive analysis across multiple images in a single conversation.
### Supported Models
The following models support multi-image chat:
1. Idefics 2
2. LLaVA (Interleave)
3. Qwen2-VL
4. Phi3-Vision
5. Pixtral### Usage Examples
#### Python Script
```python
from mlx_vlm import load, generate
from mlx_vlm.prompt_utils import apply_chat_template
from mlx_vlm.utils import load_configmodel_path = "mlx-community/Qwen2-VL-2B-Instruct-4bit"
model, processor = load(model_path)
config = load_config(model_path)images = ["path/to/image1.jpg", "path/to/image2.jpg"]
prompt = "Compare these two images."formatted_prompt = apply_chat_template(
processor, config, prompt, num_images=len(images)
)output = generate(model, processor, images, formatted_prompt, verbose=False)
print(output)
```#### Command Line
```sh
python -m mlx_vlm.generate --model mlx-community/Qwen2-VL-2B-Instruct-4bit --max-tokens 100 --prompt "Compare these images" --image path/to/image1.jpg path/to/image2.jpg
```These examples demonstrate how to use multiple images with MLX-VLM for more complex visual reasoning tasks.
# Fine-tuning
MLX-VLM supports fine-tuning models with LoRA and QLoRA.
## LoRA & QLoRA
To learn more about LoRA, please refer to the [LoRA.md](./mlx_vlm/LORA.MD) file.