Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Bobholamovic/ESCNet
ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very High Resolution Remote Sensing Images
https://github.com/Bobholamovic/ESCNet
change-detection convolutional-neural-networks deep-learning pytorch remote-sensing
Last synced: about 2 months ago
JSON representation
ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very High Resolution Remote Sensing Images
- Host: GitHub
- URL: https://github.com/Bobholamovic/ESCNet
- Owner: Bobholamovic
- License: mit
- Created: 2021-01-15T12:10:53.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-07-07T08:07:31.000Z (over 3 years ago)
- Last Synced: 2024-11-10T22:45:50.403Z (about 2 months ago)
- Topics: change-detection, convolutional-neural-networks, deep-learning, pytorch, remote-sensing
- Language: C++
- Homepage:
- Size: 18 MB
- Stars: 48
- Watchers: 2
- Forks: 6
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-remote-sensing-change-detection - Zhang H, Lin M, Yang G, et al. ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images
README
# ESCNet
This repo is an official implementation of ["ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very High Resolution Remote Sensing Images."](https://ieeexplore.ieee.org/document/9474911)## Dependencies
> pytorch==1.3.1
scipy==1.3.1
scikit-image==0.15.0Tested using Python 3.7.4 on Ubuntu 16.04. nvcc version was 9.2.148.
## How-To
```bash
cd lib
. install.sh
cd ..
python demo.py
```## Citation
If you find this work interesting in your research, please cite:
```
@ARTICLE{9474911,
author={Zhang, Hongyan and Lin, Manhui and Yang, Guangyi and Zhang, Liangpei},
journal={IEEE Transactions on Neural Networks and Learning Systems},
title={ESCNet: An End-to-End Superpixel-Enhanced Change Detection Network for Very-High-Resolution Remote Sensing Images},
year={2021},
volume={},
number={},
pages={1-15},
doi={10.1109/TNNLS.2021.3089332}
}
```