Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/CAPTAIN-WHU/iSAID_Devkit

[CVPR'W19-Oral] Official repository for "iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images"
https://github.com/CAPTAIN-WHU/iSAID_Devkit

aerial-imagery cvpr19 dataset devkit dota evaluation-code instance-segmentation object-detection pytorch pytorch-implementation

Last synced: 3 months ago
JSON representation

[CVPR'W19-Oral] Official repository for "iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images"

Awesome Lists containing this project

README

        

[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/isaid-a-large-scale-dataset-for-instance/object-detection-on-isaid)](https://paperswithcode.com/sota/object-detection-on-isaid?p=isaid-a-large-scale-dataset-for-instance)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/isaid-a-large-scale-dataset-for-instance/instance-segmentation-on-isaid)](https://paperswithcode.com/sota/instance-segmentation-on-isaid?p=isaid-a-large-scale-dataset-for-instance)

## iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images, CVPR workshops, 2019.

**Codes for Data Preparation and Evaluation**

1. **Environment and dependencies installation**
1. Create the conda environment
```conda env create -f environment.yml```
2. Activate the current working environment
```source activate py_isaid```
3. Setup pycocotols for the evalaution server
- `cd cocoapi/PythonAPI`
- `make`
- `python setup.py install`
4. Setup cityscapesScripts for the evalaution server
- `cd preprocess/cityscapesScripts`
- `python setup.py install`
5. Setup detectron for the evalaution server
- `cd preprocess/Detectron`
- `make`
6. Note: opencv version == 3.4.2

2. **Data Preparation for Training, Validation and Testing**
1. Please download iSAID dataset that contains image segmentation masks. Also, download original images from DOTA dataset.
Make sure that the final dataset must have this structure:
```
iSAID
├── test
│   └── images
│   ├── P0006.png
│   └── ...
│   └── P0009.png
├── train
│   └── images
│   ├── P0002_instance_color_RGB.png
│   ├── P0002_instance_id_RGB.png
│   ├── P0002.png
│   ├── ...
│   ├── P0010_instance_color_RGB.png
│   ├── P0010_instance_id_RGB.png
│   └── P0010.png
└── val
└── images
├── P0003_instance_color_RGB.png
├── P0003_instance_id_RGB.png
├── P0003.png
├── ...
├── P0004_instance_color_RGB.png
├── P0004_instance_id_RGB.png
└── P0004.png
```
Note that the segmentation masks for the test images are withheld for the evaluation server.

3. Change the current working directory to preprocess folder.
```cd preprocess```
4. Create symlink for iSAID dataset as
```ln -s /path-of-iSAID-dataset ./dataset/```

5. Split training and validation images into patches
```python split.py --set train,val```

6. Split test images into patches
```python split.py --set test```

7. Create coco-format json annotation files for train and val split images
```python preprocess.py --set train,val```


Make sure that the final dataset after preprocesing must have this structure:

```
iSAID_patches
├── test
│ └── images
│ ├── P0006_0_0_800_800.png
│ └── ...
│ └── P0009_0_0_800_800.png
├── train
│ └── instance_only_filtered_train.json
│ └── images
│ ├── P0002_0_0_800_800_instance_color_RGB.png
│ ├── P0002_0_0_800_800_instance_id_RGB.png
│ ├── P0002_0_800_800.png
│ ├── ...
│ ├── P0010_0_0_800_800_instance_color_RGB.png
│ ├── P0010_0_0_800_800_instance_id_RGB.png
│ └── P0010_0_800_800.png
└── val
└── instance_only_filtered_val.json
└── images
├── P0003_0_0_800_800_instance_color_RGB.png
├── P0003_0_0_800_800_instance_id_RGB.png
├── P0003_0_0_800_800.png
├── ...
├── P0004_0_0_800_800_instance_color_RGB.png
├── P0004_0_0_800_800_instance_id_RGB.png
└── P0004_0_0_800_800.png
```

3. **Method**
1. Run your instance segmentation method on patches and generate json file of predictions

4. **Evaluation**
1. Change the current working directory to evaluate folder.
```cd ../evaluate```
3. Given json of predictions and json of val set ground truth (obtained after preprocess.py), Compute Average Precision
```python evaluate.py ```