Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/CUHK-AIM-Group/UN-SAM
https://github.com/CUHK-AIM-Group/UN-SAM
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/CUHK-AIM-Group/UN-SAM
- Owner: CUHK-AIM-Group
- License: mit
- Created: 2024-02-25T14:47:43.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-06-28T09:12:31.000Z (7 months ago)
- Last Synced: 2024-06-29T09:52:15.358Z (7 months ago)
- Language: Python
- Size: 67.4 KB
- Stars: 34
- Watchers: 2
- Forks: 3
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
# Universal Prompt-Free Segmentation for Generalized Nucleus Images (UN-SAM)
This repository is an official PyTorch implementation of the paper **"UN-SAM: Universal Prompt-Free Segmentation for Generalized Nucleus Images"** [[paper]()] submitted to IEEE Transactions on Medical Imaging.## Dependencies
* Python 3.10
* PyTorch >= 1.10.0
* albumentations 1.5.2
* monai 1.3.0
* pytorch_lightning 1.1.0## Code
Clone this repository into any place you want.
```bash
git clone https://github.com/CUHK-AIM-Group/UNSAM.git
cd UNSAM
mkdir data; mkdir pretrain;
```
## Quickstart
* Train the UN-SAM with the default settings:
```python
python train.py --dataset data/$YOUR DATASET NAME$ --sam_pretrain pretrain/$SAM CHECKPOINT$
```## Cite
If you find our work useful in your research or publication, please cite our work:
```
@article{chen2024sam,
title={UN-SAM: Universal Prompt-Free Segmentation for Generalized Nuclei Images},
author={Chen, Zhen and Xu, Qing and Liu, Xinyu and Yuan, Yixuan},
journal={arXiv preprint arXiv:2402.16663},
year={2024}
}
```## Acknowledgements
* [SAM](https://github.com/facebookresearch/segment-anything)