Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/CamDavidsonPilon/lifetimes
Lifetime value in Python
https://github.com/CamDavidsonPilon/lifetimes
data-science python statistics
Last synced: 3 months ago
JSON representation
Lifetime value in Python
- Host: GitHub
- URL: https://github.com/CamDavidsonPilon/lifetimes
- Owner: CamDavidsonPilon
- License: mit
- Archived: true
- Created: 2014-12-29T02:47:57.000Z (almost 10 years ago)
- Default Branch: master
- Last Pushed: 2024-06-28T14:10:21.000Z (4 months ago)
- Last Synced: 2024-06-28T15:35:39.008Z (4 months ago)
- Topics: data-science, python, statistics
- Language: Python
- Homepage:
- Size: 4.05 MB
- Stars: 1,446
- Watchers: 54
- Forks: 373
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE.txt
- Code of conduct: .github/CODE_OF_CONDUCT.md
Awesome Lists containing this project
- awesome-marketing-machine-learning - lifetimes
README
![](http://i.imgur.com/7s3jqZM.png)
## Read me first: Latest on the lifetimes project
đź‘‹ This codebase has moved to "archived-mode". We won't be adding new features, improvements, or even answering issues in this codebase.
**A project has emerged as a successor to lifetimes, [PyMC-Lab/PyMC-Marketing](https://github.com/pymc-labs/pymc-marketing)**, please check it out!
#### Measuring users is hard. Lifetimes makes it easy.
[![Inactively Maintained](https://img.shields.io/badge/Maintenance%20Level-Inactively%20Maintained-yellowgreen.svg)](https://gist.github.com/cheerfulstoic/d107229326a01ff0f333a1d3476e068d)
[![PyPI version](https://badge.fury.io/py/Lifetimes.svg)](https://badge.fury.io/py/Lifetimes)
[![Documentation Status](https://readthedocs.org/projects/lifetimes/badge/?version=latest)](http://lifetimes.readthedocs.io/en/latest/?badge=latest)
[![Build Status](https://travis-ci.org/CamDavidsonPilon/lifetimes.svg?branch=master)](https://travis-ci.org/CamDavidsonPilon/lifetimes)
[![Coverage Status](https://coveralls.io/repos/CamDavidsonPilon/lifetimes/badge.svg?branch=master)](https://coveralls.io/r/CamDavidsonPilon/lifetimes?branch=master)## Introduction
Lifetimes can be used to analyze your users based on a few assumption:
1. Users interact with you when they are "alive".
2. Users under study may "die" after some period of time.I've quoted "alive" and "die" as these are the most abstract terms: feel free to use your own definition of "alive" and "die" (they are used similarly to "birth" and "death" in survival analysis). Whenever we have individuals repeating occurrences, we can use Lifetimes to help understand user behaviour.
### Applications
If this is too abstract, consider these applications:
- Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn't for them)
- Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient moved to a new city, or became deceased.)
- Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die = removed the app)
- Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with your product)
- Predicting the lifetime value of your customers### Specific Application: Customer Lifetime Value
As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most important part of your business's sales efforts. [And (apparently) everyone is doing it wrong (Prof. Fader's Video Lecture)](https://www.youtube.com/watch?v=guj2gVEEx4s). *Lifetimes* is a Python library to calculate CLV for you.
## Installation
```bash
pip install lifetimes
```## Contributing
Please refer to the [Contributing Guide](https://github.com/CamDavidsonPilon/lifetimes/blob/master/CONTRIBUTING.md) before creating any *Pull Requests*. It will make life easier for everyone.
## Documentation and tutorials
[Official documentation](http://lifetimes.readthedocs.io/en/latest/)## Questions? Comments? Requests?
Please create an issue in the [lifetimes repository](https://github.com/CamDavidsonPilon/lifetimes).
## Main Articles
1. Probably, the seminal article of Non-Contractual CLV is [*Counting Your Customers: Who Are They and What Will They Do Next?*](https://www.jstor.org/stable/2631608?seq=1#page_scan_tab_contents), by David C. Schmittlein, Donald G. Morrison and Richard Colombo. Despite it being paid, it is worth the read. The relevant information will eventually end up in this library's documentation though.
1. The other (more recent) paper is [*“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model*](http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf), by Peter Fader, Bruce Hardie and Ka Lok Lee.## More Information
1. [Roberto Medri](http://cdn.oreillystatic.com/en/assets/1/event/85/Case%20Study_%20What_s%20a%20Customer%20Worth_%20Presentation.pdf) did a nice presentation on CLV at Etsy.
1. [Papers](http://mktg.uni-svishtov.bg/ivm/resources/Counting_Your_Customers.pdf), lots of [papers](http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf).
1. R implementation is called [BTYD](http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf) (*Buy 'Til You Die*).
1. [Bruce Hardie's Website](http://brucehardie.com/), especially his notes, is full of useful and essential explanations, many of which are featured in this library.