Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Chen-Cai-OSU/awesome-equivariant-network

Paper list for equivariant neural network
https://github.com/Chen-Cai-OSU/awesome-equivariant-network

List: awesome-equivariant-network

Last synced: about 1 month ago
JSON representation

Paper list for equivariant neural network

Awesome Lists containing this project

README

        

# awesome-equivariant-network

Paper list for equivariant neural network. Work-in-progress.

Feel free to suggest relevant papers in the following format.

```markdown
**Group Equivariant Convolutional Networks**
Taco S. Cohen, Max Welling ICML 2016 [paper](https://arxiv.org/pdf/1602.07576.pdf)
```

*Acknowledgement*: I would like to thank Maurice Weiler, Fabian Fuchs, Tess Smidt, Rui Wang, David Pfau, Jonas Köhler, Taco Cohen, Gregor Simm, Erik J Bekkers, Jean-Baptiste Cordonnier, David W. Romero, Ivan Sosnovik, Kostas Daniilidis for paper suggestions! Thank Weihao Xia for helping out typesetting!

### Table of Contents
- [Equivariance and Group convolution](#equivariance-and-Group-convolution)
- [Theory](#theory)
- [Equivariant Density Estimation and Sampling](equivariant-density-estimation-and-sampling)
- [Application](#application)
- [Permutation Equivariance](#permutation-equivariance)
- [Talk and Tutorial](#talk-and-tutorial)
- [TO READ](#to-read)

### [Equivariance and Group convolution](#content)

1. **Group Equivariant Convolutional Networks**
Taco S. Cohen, Max Welling ICML 2016 [paper](https://arxiv.org/pdf/1602.07576.pdf)
Note: first paper; discrete group;
2. **Steerable CNNs**
Taco S. Cohen, Max Welling ICLR 2017 [paper](https://arxiv.org/abs/1612.08498)
3. **Harmonic Networks: Deep Translation and Rotation Equivariance**
Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, Gabriel J. Brostow CVPR 2017 [paper](https://arxiv.org/abs/1612.04642)
4. **Spherical CNNs**
Taco S. Cohen, Mario Geiger, Jonas Koehler, Max Welling ICLR 2018 best paper [paper](https://arxiv.org/abs/1801.10130)
Note: use generalized FFT to speed up convolution on $S^2$ and $SO(3)$
5. **Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network**
Risi Kondor, Zhen Lin, Shubhendu Trivedi NeurIPS 2018 [paper](https://arxiv.org/abs/1806.09231)
Note: perform equivariant nonlinearity in Fourier space;
6. **General E(2)-Equivariant Steerable CNNs**
Maurice Weiler, Gabriele Cesa NeurIPS 2019 [paper](https://arxiv.org/abs/1911.08251)
Note: nice benchmark on different reprsentations
7. **Learning Steerable Filters for Rotation Equivariant CNNs**
Maurice Weiler, Fred A. Hamprecht, Martin Storath CVPR 2018 [paper](https://arxiv.org/abs/1711.07289)
Note: group convolutions, kernels parameterized in circular harmonic basis (steerable filters);
8. **Learning SO(3) Equivariant Representations with Spherical CNNs**
Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, Kostas Daniilidis ECCV 2018 [paper](https://openaccess.thecvf.com/content_ECCV_2018/html/Carlos_Esteves_Learning_SO3_Equivariant_ECCV_2018_paper.html)
Note: SO(3) equivariance; zonal filter
9. **Polar Transformer Networks**
Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, Kostas Daniilidis ICLR 2018 [paper](https://arxiv.org/abs/1709.01889)
10. **3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data**
Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen NeurIPS 2018 [paper](https://arxiv.org/abs/1807.02547)
Note: SE(3) equivariance; characterize the basis of steerable kernel
11. **Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds**
Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley [paper](https://arxiv.org/abs/1802.08219)
Note: SE(3) equivariance for point clouds
12. **Equivariant Multi-View Networks**
Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, Kostas Daniilidis ICCV 2019 [paper](https://arxiv.org/abs/1904.00993)
13. **Gauge Equivariant Convolutional Networks and the Icosahedral CNN**
Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, Max Welling ICML 2019 [paper](https://arxiv.org/abs/1902.04615), [talk](https://slideslive.com/38915809/gauge-equivariant-convolutional-networks?locale=de)
Note: gauge equivariance on general manifold
14. **Cormorant: Covariant Molecular Neural Networks**
Brandon Anderson, Truong-Son Hy, Risi Kondor NeurIPS 2019 [paper](https://arxiv.org/abs/1906.04015)
15. **Deep Scale-spaces: Equivariance Over Scale**
Daniel Worrall, Max Welling NeurIPS 2019 [paper](https://papers.nips.cc/paper/2019/hash/f04cd7399b2b0128970efb6d20b5c551-Abstract.html)
16. **Scale-Equivariant Steerable Networks**
Ivan Sosnovik, Michał Szmaja, Arnold Smeulders ICLR 2020 [paper](https://openreview.net/forum?id=HJgpugrKPS)
17. **B-Spline CNNs on Lie Groups**
Erik J Bekkers ICLR 2020 [paper](https://openreview.net/forum?id=H1gBhkBFDH)
18. **SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks**
Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, Max Welling NeurIPS 2020 [paper](https://arxiv.org/abs/2006.10503), [blog](https://fabianfuchsml.github.io/se3transformer/)
Note: TFN + equivariant self-attention; improved spherical harmonics computation
19. **Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs**
Pim de Haan, Maurice Weiler, Taco Cohen, Max Welling ICLR 2021 [paper](https://arxiv.org/abs/2003.05425)
Note: anisotropic gauge equivariant kernels + message passing by parallel transporting features over mesh edges
20. **Lorentz Group Equivariant Neural Network for Particle Physics**
Alexander Bogatskiy, Brandon Anderson, Jan T. Offermann, Marwah Roussi, David W. Miller, Risi Kondor ICML 2020 [paper](https://arxiv.org/abs/2006.04780)
Note: SO(1, 3) equivariance
21. **CNNs on Surfaces using Rotation-Equivariant Features**
Ruben Wiersma, Elmar Eisemann, Klaus Hildebrandt SIGGRAPH 2020 [paper](https://dl.acm.org/doi/pdf/10.1145/3386569.3392437), [code](https://github.com/rubenwiersma/hsn)
22. **Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data**
Marc Finzi, Samuel Stanton, Pavel Izmailov, Andrew Gordon Wilson ICML 2020 [paper](https://arxiv.org/abs/2002.12880)
Note: fairly generic architecture; use Monte Carlo sampling to achieve equivariance in expectation;
23. **Spin-Weighted Spherical CNNs**
Carlos Esteves, Ameesh Makadia, Kostas Daniilidis NeurIPS 2020 [paper](https://arxiv.org/abs/2006.10731)
Note: anisotropic filter for vector field on sphere
24. **Learning Invariances in Neural Networks**
Gregory Benton, Marc Finzi, Pavel Izmailov, Andrew Gordon Wilson NeurIPS 2020 [paper](https://arxiv.org/abs/2010.11882)
Note: very interesting approch; enfore "soft" invariance via learning over both model parameters and distributions over augmentations
25. **LieTransformer: Equivariant self-attention for Lie Groups**
Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, Hyunjik Kim [paper](https://arxiv.org/abs/2012.10885)
Note: equivariant self attention to arbitrary Lie groups and their discrete subgroups
26. **Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data**
David W. Romero, Mark Hoogendoorn ICLR 2020 [paper](https://arxiv.org/abs/1911.07849)
27. **Attentive Group Equivariant Convolutional Networks**
David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn ICML 2020 [paper](https://arxiv.org/abs/2002.03830)
28. **Wavelet Networks: Scale Equivariant Learning From Raw Waveforms**
David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn [paper](https://arxiv.org/abs/2006.05259)
29. **Group Equivariant Stand-Alone Self-Attention For Vision**
David W. Romero, Jean-Baptiste Cordonnier ICLR 2021 [paper](https://arxiv.org/abs/2010.00977)
30. **Incorporating Symmetry into Deep Dynamics Models for Improved Generalization**
Rui Wang, Robin Walters, Rose Yu ICLR 2021 [paper](https://arxiv.org/abs/2002.03061)
31. **MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning**
Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek, Max Welling NeurIPS 2020 [paper](https://arxiv.org/abs/2006.16908)
32. **Isometric Transformation Invariant and Equivariant Graph Convolutional Networks**
Masanobu Horie, Naoki Morita, Toshiaki Hishinuma, Yu Ihara, Naoto Mitsume ICLR 2021 [paper](https://arxiv.org/abs/2005.06316)
33. **E(n) Equivariant Graph Neural Networks**
Victor Garcia Satorras, Emiel Hoogeboom, Max Welling ICML 2021 [paper](https://arxiv.org/abs/2102.09844)
Note: a simple alternative that achieves E(n) equivariance
34. **Vector Neurons: A General Framework for SO(3)-Equivariant Networks**
Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, Leonidas Guibas [paper](https://arxiv.org/abs/2104.12229) Note: a simple MLP for type-1 features
35. **Equivariant message passing for the prediction of tensorial properties and molecular spectra**
Kristof T. Schütt, Oliver T. Unke, Michael Gastegger ICML 2021 [paper](https://arxiv.org/abs/2102.03150)
36. **Field Convolutions For Surface CNNs**
Thomas W. Mitchel, Vladimir G. Kim, Michael Kazhdan ICCV 2021 (Oral) [paper](https://openaccess.thecvf.com/content/ICCV2021/html/Mitchel_Field_Convolutions_for_Surface_CNNs_ICCV_2021_paper.html)
37. **Scalars are universal: Equivariant machine learning, structured like classical physics**
Soledad Villar, David W.Hogg, Kate Storey-Fisher, Weichi Yao, Ben Blum-Smith NeruIPS 2021 [paper](https://arxiv.org/abs/2106.06610)
38. **Efficient Equivariant Network**
Lingshen He, Yuxuan Chen, Zhengyang shen, Yiming Dong, Yisen Wang, Zhouchen Lin NeruIPS 2021 [paper](https://proceedings.neurips.cc/paper_files/paper/2021/hash/2a79ea27c279e471f4d180b08d62b00a-Abstract.html), [code](https://github.com/LingshenHe/Efficient-Equivariant-Network)
39. **GemNet: Universal Directional Graph Neural Networks for Molecules**
Johannes Klicpera, Florian Becker, Stephan Günnemann NeurIPS 2021 [paper](https://proceedings.neurips.cc/paper/2021/hash/35cf8659cfcb13224cbd47863a34fc58-Abstract.html)
40. **Automatic Symmetry Discovery with Lie Algebra Convolutional Network**
Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, Rose Yu NeurIPS 2021 [paper](https://openreview.net/pdf?id=NPOWF_ZLfC5)
41. **Geometric and Physical Quantities improve E(3) Equivariant Message Passing**
Johannes Brandstetter and Rob Hesselink and Elise van der Pol and Erik J Bekkers and Max Welling ICLR 2022 (spotlight) [paper](https://arxiv.org/abs/2110.02905), [code](https://github.com/RobDHess/Steerable-E3-GNN)
42. **Frame Averaging for Invariant and Equivariant Network Design**
Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J. Smith, Yaron Lipman [paper](https://arxiv.org/abs/2110.03336) ICLR 2022
43. **Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics**
Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Kornbluth, Boris Kozinsky [paper](https://arxiv.org/abs/2204.05249)
44. **Möbius Convolutions for Spherical CNNs**
Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, Michael Kazhdan SIGGRAPH 2022 [paper](https://arxiv.org/abs/2201.12212)
(Note: Equivariance to the action of SL(2, C) on the sphere. To our knowledge this is the first *conformally* equivariant convolutional surface network)
45. **DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds**
Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt SIGGRAPH 2022 [paper](https://arxiv.org/abs/2111.08799), [code](https://github.com/rubenwiersma/deltaconv)
Rotation equivariance by using differential operators.
46. **Neural ePDOs: Spatially Adaptive Equivariant Partial Differential Operator Based Networks**
Lingshen He*, Yuxuan Chen*, Zhengyang shen, Yibo Yang, Zhouchen Lin ICLR 2023 (spotlight) [paper](https://openreview.net/forum?id=D1Iqfm7WTkk), [code](https://github.com/YuxuanChen21/Neural_ePDOs)
47. **Steerable Partial Differential Operators for Equivariant Neural Networks**
Erik Jenner, Maurice Weiler ICLR 2022 [paper](https://arxiv.org/abs/2106.10163)
48. **A Program to build E(N)-Equivariant Steerable CNNs**
Gabriele Cesa, Leon Lang, Maurice Weiler ICLR 2022 [paper](https://openreview.net/pdf?id=WE4qe9xlnQw)
49. **Clifford-Steerable Convolutional Neural Networks**
Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, Patrick Forré ICML 2024 [paper](https://arxiv.org/abs/2402.14730)

### [Theory](#content)

1. **On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups**
Risi Kondor, Shubhendu Trivedi ICML 2018 [paper](https://arxiv.org/abs/1802.03690)
Note: convolution is all you need (for scalar fields)

3. **A General Theory of Equivariant CNNs on Homogeneous Spaces**
Taco Cohen, Mario Geiger, Maurice Weiler NeurIPS 2019 [paper](https://arxiv.org/abs/1811.02017)
Note: convolution is all you need (for general fields)

4. **Equivariance Through Parameter-Sharing**
Siamak Ravanbakhsh, Jeff Schneider, Barnabas Poczos ICML 2017 [paper](https://arxiv.org/abs/1702.08389)

5. **Universal approximations of invariant maps by neural networks**
Dmitry Yarotsky [paper](https://arxiv.org/abs/1804.10306)

6. **A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels**
Leon Lang, Maurice Weiler ICLR 2021 [paper](https://arxiv.org/abs/2010.10952)
Note: steerable kernel spaces are fully understood and parameterized in terms of 1) generalized reduced matrix elements, 2) Clebsch-Gordan coefficients, and 3) harmonic basis functions on homogeneous spaces.

7. **On the Universality of Rotation Equivariant Point Cloud Networks**
Nadav Dym, Haggai Maron ICLR 2021 [paper](https://arxiv.org/abs/2010.02449),
Note: universality for TFN and se3-transformer

8. **Universal Equivariant Multilayer Perceptrons**
Siamak Ravanbakhsh [paper](https://arxiv.org/abs/2002.02912)

9. **Provably Strict Generalisation Benefit for Equivariant Models**
Bryn Elesedy, Sheheryar Zaidi ICML 2021 [paper](https://arxiv.org/abs/2102.10333)

10. **Implicit Bias of Linear Equivariant Networks**
Hannah Lawrence, Kristian Georgiev, Andrew Dienes, Bobak T. Kiani ICML 2022 [paper](https://arxiv.org/abs/2110.06084)

11. **On the Expressive Power of Geometric Graph Neural Networks**
Chaitanya K. Joshi, Cristian Bodnar, Simon V. Mathis, Taco Cohen, Pietro Liò ICML 2023 [paper](https://arxiv.org/abs/2301.09308)

12. **Equivariant and Coordinate Independent Convolutional Networks - A Gauge Field Theory of Neural Networks**
Maurice Weiler ,  Patrick Forré ,  Erik Verlinde ,  Max Welling [book](https://maurice-weiler.gitlab.io/cnn_book/EquivariantAndCoordinateIndependentCNNs.pdf)

### [Equivariant Density Estimation and Sampling](#content)

1. **Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities**
Jonas Köhler, Leon Klein, Frank Noé ICML 2020 [paper](https://arxiv.org/abs/2006.02425)
Note: general framework for constructing equivariant normalizing flows on euclidean spaces. Instantiation for particle systems/point clouds = simultanoues SE(3) and permutation equivariance.
2. **Equivariant Hamiltonian Flows**
Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, Peter Toth NeurIPS 2019 ML4Phys workshop [paper](https://arxiv.org/abs/1909.13739)
Note: general framework for constructing equivariant normalizing flows in phase space utilizing Hamiltonian dynamics. Instantiation for SE(2) equivariance.
3. **Sampling using SU(N) gauge equivariant flows**
Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan [paper](https://arxiv.org/abs/2008.05456)
Note: normalizing flows for lattice gauge theory. Instantiation for SU(2)/SU(3) equivariance.
4. **Exchangeable neural ode for set modeling**
Yang Li, Haidong Yi, Christopher M. Bender, Siyuan Shan, Junier B. Oliva NeurIPS 2020 [paper](https://arxiv.org/abs/2008.02676)
Note: framework for permutation equivariant flows for set data. Instantiation for permutation equivariance.
5. **Equivariant Normalizing Flows for Point Processes and Sets**
Marin Biloš, Stephan Günnemann NeurIPS 2020 [paper](https://arxiv.org/abs/2010.03242)
Note: framework for permutation equivariant flows for set data. Instantiation for permutation equivariance.
6. **The Convolution Exponential and Generalized Sylvester Flows**
Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, Max Welling NeurIPS 2020 [paper](https://arxiv.org/abs/2006.01910)
Note: invertible convolution operators. Instantiation for permutation equivariance.
7. **Targeted free energy estimation via learned mappings**
Peter Wirnsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sébastien Racanière, Alexander Pritzel, Danilo Jimenez Rezende, Charles Blundell J Chem Phys. 2020 Oct 14;153(14):144112. [paper](https://arxiv.org/abs/2002.04913)
Note: normalizing flows for particle systems on a torus. Instantiation for permutation equivariance.
8. **Temperature-steerable flows**
Manuel Dibak, Leon Klein, Frank Noé NeurIPS 2020 ML4Phys workshops [paper](https://arxiv.org/abs/2012.00429)
Note: normalizing flows in phase space with equivariance with respect to changes in temperature.
9. **Equivariant Manifold Flows**
Isay Katsman, Aaron Lou, Derek Lim, Qingxuan Jiang, Ser-Nam Lim, Christopher De Sa NeurIPS 2021 [paper](https://arxiv.org/pdf/2107.08596.pdf)
Note: normalizing flows that allow for learning over any Riemannian manifold with respect to any symmetry (isometry subgroup action invariance).

### [Application](#content)
1. **Trajectory Prediction using Equivariant Continuous Convolution**
Robin Walters, Jinxi Li, Rose Yu ICLR 2021 [paper](https://arxiv.org/abs/2010.11344)
2. **SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials**
Simon Batzner, Tess E. Smidt, Lixin Sun, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Boris Kozinsky [paper](https://arxiv.org/abs/2101.03164)
4. **Finding Symmetry Breaking Order Parameters with Euclidean Neural Networks**
Tess E. Smidt, Mario Geiger, Benjamin Kurt Miller [paper](https://arxiv.org/abs/2007.02005)
5. **Group Equivariant Generative Adversarial Networks**
Neel Dey, Antong Chen, Soheil Ghafurian ICLR 2021 [paper](https://arxiv.org/abs/2005.01683)
6. **Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks**
David Pfau, James S. Spencer, Alexander G. de G. Matthews, W. M. C. Foulkes [paper](https://arxiv.org/abs/1909.02487)
7. **Symmetry-Aware Actor-Critic for 3D Molecular Design**
Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, José Miguel Hernández-Lobato ICLR 2021 [paper](https://arxiv.org/abs/2011.12747)
8. **Roto-translation equivariant convolutional networks: Application to histopathology image analysis**
Maxime W. Lafarge, Erik J. Bekkers, Josien P.W. Pluim, Remco Duits, Mitko Veta MedIA [paper](https://arxiv.org/abs/2002.08725)
9. **Scale Equivariance Improves Siamese Tracking**
Ivan Sosnovik\*, Artem Moskalev\*, Arnold Smeulders WACV 2021 [paper](https://arxiv.org/abs/2007.09115)
10. **3D G-CNNs for Pulmonary Nodule Detection**
Marysia Winkels, Taco S. Cohen [paper](https://arxiv.org/abs/1804.04656)
International Conference on Medical Imaging with Deep Learning (MIDL), 2018.
11. **Roto-translation covariant convolutional networks for medical image analysis**
Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A.J. Eppenhof, Josien P.W. Pluim, Remco Duits MICCAI 2018 Young Scientist Award [paper](https://arxiv.org/abs/1804.03393)
12. **Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data**
Axel Elaldi\*, Neel Dey\*, Heejong Kim, Guido Gerig, Information Processing in Medical Imaging (IPMI) 2021 [paper](https://arxiv.org/abs/2102.09462)
13. **Rotation-Equivariant Deep Learning for Diffusion MRI**
Philip Müller, Vladimir Golkov, Valentina Tomassini, Daniel Cremers [paper](https://arxiv.org/abs/2102.06942)
14. **Equivariant geometric learning for digital rock physics: estimating formation factor and effective permeability tensors from Morse graph**
Chen Cai, Nikolaos Vlassis, Lucas Magee, Ran Ma, Zeyu Xiong, Bahador Bahmani, Teng-Fong Wong, Yusu Wang, WaiChing Sun [paper](https://arxiv.org/abs/2104.05608)
Note: equivariant nets + Morse graph for permeability tensor prediction
15. **Direct prediction of phonon density of states with Euclidean neural network**
Zhantao Chen, Nina Andrejevic, Tess Smidt, Zhiwei Ding, Yen-Ting Chi, Quynh T. Nguyen, Ahmet Alatas, Jing Kong, Mingda Li, Advanced Science (2021) [paper](https://onlinelibrary.wiley.com/doi/10.1002/advs.202004214) [arXiv](https://arxiv.org/abs/2009.05163)
16. **SE(3)-equivariant prediction of molecular wavefunctions and electronic densities**
Oliver T. Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, Klaus-Robert Müller [paper](https://arxiv.org/abs/2106.02347)
17. **Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking**
Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi Jaakkola, Andreas Krause, under review, 2022 [paper](https://arxiv.org/abs/2111.07786)
18. **Roto-translated Local Coordinate Frames For Interacting Dynamical Systems**
Miltiadis Kofinas, Naveen Shankar Nagaraja, Efstratios Gavves NeurIPS 2021 [paper](https://arxiv.org/abs/2110.14961)
19. **MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields**

Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, Gábor Csányi, under review, 2022 [paper](https://arxiv.org/abs/2206.07697), [code](https://github.com/ACEsuit/mace)
20. **Equivariant Q Learning in Spatial Action Spaces**
Dian Wang, Robin Walters, Xupeng Zhu, Robert Platt, CoRL 2021 [paper](https://arxiv.org/pdf/2110.15443.pdf)
21. **SO(2)-Equivariant Reinforcement Learning**
Dian Wang, Robin Walters, Robert Platt, ICLR 2022 [paper](https://arxiv.org/pdf/2203.04439.pdf)
22. **Sample Efficient Grasp Learning Using Equivariant Models**
Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, Robert Platt, RSS 2022 [paper](https://arxiv.org/pdf/2202.09468.pdf)
23. **Equivariant Transporter Network**
Haojie Huang, Dian Wang, Robin Walters, Robert Platt, RSS 2022 [paper](https://arxiv.org/pdf/2202.09400.pdf)
24. **On-Robot Learning With Equivariant Models**
Dian Wang, Mingxi Jia, Xupeng Zhu, Robin Walters, Robert Platt, CoRL 2022 [paper](https://arxiv.org/pdf/2203.04923.pdf)
25. **Edge Grasp Network: Graph-Based SE(3)-invariant Approach to Grasp Detection**
Haojie Huang, Dian Wang, Xupeng Zhu, Robin Walters, Robert Platt, Under Review [paper](https://arxiv.org/pdf/2211.00191.pdf)
26. **SEIL: Simulation-augmented Equivariant Imitation Learning**
Mingxi Jia, Dian Wang, Guanang Su, David Klee, Xupeng Zhu, Robin Walters, Robert Platt, Under Review [paper](https://arxiv.org/pdf/2211.00194.pdf)
27. **The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry**
Dian Wang, Jung Yeon Park, Neel Sortur, Lawson L.S. Wong, Robin Walters, Robert Platt, Under Review [paper](https://arxiv.org/pdf/2211.09231.pdf)

### [Permutation Equivariance](#content)
There are many paper on this topics. I only added very few of them.

1. **PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation**
Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas CVPR 2017 [paper](https://arxiv.org/abs/1612.00593)
2. **Deep Sets**
Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, Alexander Smola NeurIPS 2017 [paper](https://arxiv.org/abs/1703.06114)
3. **Invariant and Equivariant Graph Networks**
Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman ICLR 2019 [paper](https://arxiv.org/abs/1812.09902)
4. **Provably Powerful Graph Networks**
Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman NeurIPS 2019 [paper](https://arxiv.org/abs/1905.11136)
5. **Universal Invariant and Equivariant Graph Neural Networks**
Nicolas Keriven, Gabriel Peyré NeurIPS 2019 [paper](https://papers.nips.cc/paper/2019/hash/ea9268cb43f55d1d12380fb6ea5bf572-Abstract.html)
6. **On Learning Sets of Symmetric Elements**
Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya [ICML 2020 best paper](https://arxiv.org/abs/2002.08599)
7. **On the Universality of Invariant Networks**
Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman [paper](https://arxiv.org/abs/1901.09342)
8. **Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs**
Jinwoo Kim, Saeyoon Oh, Seunghoon Hong [paper](https://arxiv.org/abs/2110.14416)

### [Talk and Tutorial](#content)

IAS: [Graph Nets: The Next Generation - Max Welling - YouTube](https://www.youtube.com/watch?v=Wx8J-Kw3fTA&t=3602s)

[Equivariance and Data Augmentation workshop](https://sites.google.com/view/equiv-data-aug/home): many nice talks

IPAM: [Tess Smidt: "Euclidean Neural Networks for Emulating Ab Initio Calculations and Generating Atomi..." - YouTube](https://www.youtube.com/watch?v=8CF8Grb_brE)

IPAM: [E(3) Equivariant Neural Network Tutorial ](https://blondegeek.github.io/e3nn_tutorial/)

IPAM: [Risi Kondor: "Fourier space neural networks" ](https://www.youtube.com/watch?v=-PVyi0Keiec)

[NeurIPS 2020 tutorial: Equivariant Networks](https://nips.cc/virtual/2020/public/tutorial_3e267ff3c8b6621e5ad4d0f26142892b.html)

[Yaron Lipman - Deep Learning of Irregular and Geometric Data - YouTube](https://www.youtube.com/watch?v=fveyx5zKReo&feature=youtu.be)

Math-ML: [Erik J Bekkers: Group Equivariant CNNs beyond Roto-Translations: B-Spline CNNs on Lie Groups](https://youtu.be/rakcnrgX4oo)

Kostas Daniilidis: [Geometry-aware deep learning: A brief history of equivariant representations and recent results](https://mathinstitutes.org/videos/videos/view/15146)

Andrew White: [ Deep Learning for Molecules and Materials.](https://whitead.github.io/dmol-book/dl/Equivariant.html)

Erik Bekkers: [An Introduction to Group Equivariant Deep Learning](https://uvagedl.github.io) A course offered at UvA

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković: [Geometric Deep Learning Course](https://geometricdeeplearning.com/lectures/)

### [Background](#content)

I am by no means an expert in this field. Here are books and articles suggest by Taco Cohen when asked references to learn group theory and representation theory.

1. [Carter, Visual Group Theory](https://www.amazon.com/Visual-Group-Theory-Problem-Book/dp/088385757X)
Note: very basic intro to group theory

2. [Theoretical Aspects of Group Equivariant Neural Networks](https://arxiv.org/abs/2004.05154)
Carlos Esteves
Note: covers all the math you need for equivariant nets in a fairly compact and accessible manner.

3. [Serre, Linear Representations of Finite Groups](http://www.math.tau.ac.il/~borovoi/courses/ReprFG/Hatzagot.pdf)
Note: classic text on representations of finite groups. First few chapters are relevant to equivariant nets.

4. [G B Folland. A Course in Abstract Harmonic Analysis](https://sv.20file.org/up1/1415_0.pdf)
Note: covers representations of locally compact groups; induced representations.

5. [David Gurarie. Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications.](https://www.amazon.com/Symmetries-Laplacians-Introduction-Representations-Applications/dp/0486462889)

6. [Mark Hamilton. Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics](https://www.amazon.com/Mathematical-Gauge-Theory-Applications-Universitext/dp/3319684388)
Note: covers fiber bundles, useful for understanding homogeneous G-CNNs and Gauge CNNs.

### Theses / Dissertations
1. Taco Cohen, Equivariant Convolutional Networks, PhD Thesis, University of Amsterdam, 2021 [pdf] (Note: Part II contains a lot of new material, not published before)

2. **Extending Convolution Through Spatially Adaptive Alignment**
Thomas W. Mitchel, PhD Thesis, Johns Hopkins University, 2022 [pdf](https://www.mitchel.computer/doc/thesis.pdf)
*Presents a novel, unified theoretical framework for transformation-equivariant convolutions on arbitrary homogenous spaces and 2D Riemannian manifolds. Can handle high-dimensional, non-compact transformation groups.*

### [TO READ](#content)
There are many paper I haven't read carefully yet.

1. **Making Convolutional Networks Shift-Invariant Again**
Richard Zhang ICML 2019 [paper](https://arxiv.org/abs/1904.11486)
2. **Probabilistic symmetries and invariant neural networks**
Benjamin Bloem-Reddy, Yee Whye Teh JMLR [paper](https://arxiv.org/abs/1901.06082)
3. **On Representing (Anti)Symmetric Functions**
Marcus Hutter [paper](https://arxiv.org/abs/2007.15298)
4. **PDE-based Group Equivariant Convolutional Neural Networks**
Bart M.N. Smets, Jim Portegies, Erik J. Bekkers, Remco Duits [paper](https://arxiv.org/abs/2001.09046)