Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ChenYingpeng/caffe-yolov3

A real-time object detection framework of Yolov3/v4 based on caffe
https://github.com/ChenYingpeng/caffe-yolov3

caffe caffe-yolov4 yolov3 yolov4

Last synced: 3 months ago
JSON representation

A real-time object detection framework of Yolov3/v4 based on caffe

Awesome Lists containing this project

README

        

# caffe-yolov3
# Paltform
Have tested on Ubuntu16.04LTS with Jetson-TX2 and Ubuntu16.04LTS with gtx1060;

NOTE: You need change CMakeList.txt on Ubuntu16.04LTS with GTX1060.

# Install
git clone https://github.com/ChenYingpeng/caffe-yolov3

cd caffe-yolov3

mkdir build

cd build

cmake ..

make -j6

# Darknet2Caffe
darknet2caffe link [github](https://github.com/ChenYingpeng/darknet2caffe)

# Demo
First,download model and put it into dir caffemodel.

$ `./x86_64/bin/demo ../prototxt/yolov4.prototxt ../caffemodel/yolov4.caffemodel ../images/dog.jpg`

# Eval
1. Run
$ `./x86_64/bin/eval ../prototxt/yolov4.prototxt ../caffemodel/yolov4.caffemodel /path/to/coco/val2017/`

generate `coco_results.json` on `results/`.

2. Run
$ `python coco_eval/coco_eval.py --gt-json path/to/coco/annotations/instances_val2017.json --pred-json results/coco_results.json`

3. Eval results Yolov4 input size 608x608 from this repo.
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.428
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.664
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.461
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.241
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.492
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.331
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.517
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.544
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.609
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.710

```

4. Eval results Yolov4 input size 608x608 from offical model [AlexeyAB/YoloV4](https://github.com/AlexeyAB/darknet).
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.505
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.749
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.557
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.357
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.613
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.368
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.598
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.634
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.500
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.680
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.757

```

# Download Model

Baidu link [model](https://pan.baidu.com/s/1yiCrnmsOm0hbweJBiiUScQ)

# Note

1.Only inference on GPU platform,such as RTX2080, GTX1060,Jetson Tegra X1,TX2,nano,Xavier etc.

2.Support model such as yolov4,yolov3,yolov3-spp,yolov3-tiny etc.

### References
Appreciate the great work from the following repositories:
- [official/Yolo](https://pjreddie.com/darknet/yolo/)
- [AlexeyAB/YoloV4](https://github.com/AlexeyAB/darknet)