Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ChenghaoMou/pytorch-pQRNN

Implementation of pQRNN in PyTorch
https://github.com/ChenghaoMou/pytorch-pQRNN

nlp pqrnn pytorch text-classification

Last synced: about 1 month ago
JSON representation

Implementation of pQRNN in PyTorch

Awesome Lists containing this project

README

        

![banner](./banner.png)

![PyPI](https://img.shields.io/pypi/v/pytorch-pqrnn?style=plastic) ![Maintenance](https://img.shields.io/maintenance/yes/2021?style=plastic) ![PyPI - License](https://img.shields.io/pypi/l/pytorch-pqrnn?style=plastic) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4661601.svg)](https://doi.org/10.5281/zenodo.4661601)

## Installation

```bash
# install with pypi
pip install pytorch-pqrnn
# or install locally with poetry
poetry install
```

## Environment

Because of [this issue](https://github.com/salesforce/pytorch-qrnn/issues/29), `pytorch-qrnn` is no longer compatible with pytorch and it is also not actively maintained. If you want to use a QRNN layer in this model, you have install `pytorch-qrnn` with `torch <= 1.4` first.

## Usage

```python
from pytorch_pqrnn.dataset import create_dataloaders
from pytorch_pqrnn.model import PQRNN

model = PQRNN(
b=128,
d=96,
lr=1e-3,
num_layers=2,
dropout=0.5,
output_size=5,
rnn_type="GRU",
multilabel=False,
nhead=2, # used when rnn_type == "Transformer"
)

# Or load the model from your checkpoint
# model = PQRNN.load_from_checkpoint(checkpoint_path="example.ckpt")

# Text data has to be pre-processed with DummyDataset
dataset = DummyDataset(
df[["text", "label"]].to_dict("records"),
has_label=True,
feature_size=128 * 2,
add_eos_tag=True,
add_bos_tag=True,
max_seq_len=512,
label2index={"pos": 1, "neg": 0},
)

# Explicit train/val loop
# Add model.eval() when necessary
dataloader = create_dataloaders(dataset)
for batch in dataloader:
# labels could be an empty tensor if has_label is False when creating the dataset.
# To change what are included in a batch, feel free to change the collate_fn function
# in dataset.py
projections, lengths, labels = batch
logits = model.forward(projections)

# do your magic
```

## CLI Usage

```bash
Usage: run.py [OPTIONS]

Options:
--task [yelp2|yelp5|toxic] [default: yelp5]
--b INTEGER [default: 128]
--d INTEGER [default: 96]
--num_layers INTEGER [default: 2]
--batch_size INTEGER [default: 512]
--dropout FLOAT [default: 0.5]
--lr FLOAT [default: 0.001]
--nhead INTEGER [default: 4]
--rnn_type [LSTM|GRU|QRNN|Transformer]
[default: GRU]
--data_path TEXT
--help Show this message and exit.
```

Datasets

- yelp2(polarity): it will be downloaded w/ huggingface/datasets automatically
- yelp5: [json file](https://www.kaggle.com/luisfredgs/hahnn-for-document-classification?select=yelp_reviews.json) should be downloaded to into `data_path`
- toxic: [dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) should be downloaded and unzipped to into `data_path`

### Example: Yelp Polarity

python -W ignore run.py --task yelp2 --b 128 --d 64 --num_layers 4 --data_path data/

## Benchmarks(not optimized)

| Model | Model Size | Yelp Polarity (error rate) | Yelp-5 (accuracy) | Civil Comments (mean auroc) | Command |
| ------------------------ | ---------- | -------------------------- | ----------------- | --------------------------- | ---------------------------------------------------------------- |
| ~~PQRNN (this repo)~~0 | ~~78K~~ | ~~6.3~~ | ~~70.4~~ | ~~TODO~~ | `--b 128 --d 64 --num_layers 4 --rnn_type QRNN` |
| PRNN (this repo) | 90K | 5.5 | **70.7** | 95.57 | `--b 128 --d 64 --num_layers 1 --rnn_type GRU` |
| PTransformer (this repo) | 618K | 10.8 | 68 | 92.4 | `--b 128 --d 64 --num_layers 1 --rnn_type Transformer --nhead 8` |
| PRADO1 | 175K | | 65.9 | | |
| BERT | 335M | **1.81** | 70.58 | **98.856**2 | |
0. Not supported with `torch >= 1.7`
1. [Paper](https://www.aclweb.org/anthology/D19-1506.pdf)
2. Best Kaggle Submission

## Credits

- [original tensorflow source code for PRADO](https://github.com/tensorflow/models/tree/master/research/sequence_projection/prado)

- Powered by [pytorch-lightning](https://github.com/PyTorchLightning/pytorch-lightning) and [grid.ai](https://www.grid.ai/)

## Citation

```
@software{chenghao_mou_2021_4661601,
author = {Chenghao MOU},
title = {ChenghaoMou/pytorch-pQRNN: Add DOI},
month = apr,
year = 2021,
publisher = {Zenodo},
version = {0.0.3},
doi = {10.5281/zenodo.4661601},
url = {https://doi.org/10.5281/zenodo.4661601}
}
```