Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ChenyangSi/FreeU

FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral)
https://github.com/ChenyangSi/FreeU

Last synced: 5 days ago
JSON representation

FreeU: Free Lunch in Diffusion U-Net (CVPR2024 Oral)

Awesome Lists containing this project

README

        

FreeU: Free Lunch in Diffusion U-Net ()


Chenyang Si |
Ziqi Huang |
Yuming Jiang |
Ziwei Liu


S-Lab, Nanyang Technological University

[Paper](https://arxiv.org/pdf/2309.11497.pdf) | [Project Page](https://chenyangsi.top/FreeU/) | [Video](https://www.youtube.com/watch?v=-CZ5uWxvX30&t=2s) | [Demo](https://huggingface.co/spaces/ChenyangSi/FreeU)


CVPR2024 Oral



[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40Us)](https://twitter.com/scy994)
![](https://img.shields.io/github/stars/ChenyangSi/FreeU?style=social)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FChenyangSi%2FFreeU&count_bg=%23E5970E&title_bg=%23847878&icon=&icon_color=%23E7E7E7&title=Github+visitors&edge_flat=false)](https://hits.seeyoufarm.com)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FChenyangSi%2FFreeU&count_bg=%23E5D10E&title_bg=%23847878&icon=&icon_color=%23E7E7E7&title=HuggingFace+visitors&edge_flat=false)](https://hits.seeyoufarm.com)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fchenyangsi.top%2FFreeU%2F&count_bg=%239016D2&title_bg=%23847878&icon=&icon_color=%23E7E7E7&title=Page+visitors&edge_flat=false)](https://hits.seeyoufarm.com)
[![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-66cdaa)](https://huggingface.co/spaces/ChenyangSi/FreeU)

---

We propose FreeU, a method that substantially improves diffusion model sample quality at no cost: no training, no additional parameter introduced, and no increase in memory or sampling time.



:open_book: For more visual results, go checkout our Project Page

## Usage
- A demo is also available on the [![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-66cdaa)](https://huggingface.co/spaces/ChenyangSi/FreeU) (huge thanks to [AK](https://twitter.com/_akhaliq) and all the HF team for their support).
- You can use the gradio demo locally by running [`python demos/app.py`](./demo/app.py).

## FreeU Code
```python
def Fourier_filter(x, threshold, scale):
# FFT
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))

B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W)).cuda()

crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
x_freq = x_freq * mask

# IFFT
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real

return x_filtered

class Free_UNetModel(UNetModel):
"""
:param b1: backbone factor of the first stage block of decoder.
:param b2: backbone factor of the second stage block of decoder.
:param s1: skip factor of the first stage block of decoder.
:param s2: skip factor of the second stage block of decoder.
"""

def __init__(
self,
b1,
b2,
s1,
s2,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.b1 = b1
self.b2 = b2
self.s1 = s1
self.s2 = s2

def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)

if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)

h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
hs_ = hs.pop()

# --------------- FreeU code -----------------------
# Only operate on the first two stages
if h.shape[1] == 1280:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)

h[:,:640] = h[:,:640] * ((self.b1 - 1 ) * hidden_mean + 1)
hs_ = Fourier_filter(hs_, threshold=1, scale=self.s1)
if h.shape[1] == 640:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)

h[:,:320] = h[:,:320] * ((self.b2 - 1 ) * hidden_mean + 1)
hs_ = Fourier_filter(hs_, threshold=1, scale=self.s2)
# ---------------------------------------------------------

h = th.cat([h, hs_], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
```

## Parameters

You can adjust these parameters based on your models, image/video style, or tasks. You can look over the following parameters.

### SD1.4: (will be updated soon)
**b1**: 1.3, **b2**: 1.4, **s1**: 0.9, **s2**: 0.2

### SD1.5: (will be updated soon)
**b1**: 1.5, **b2**: 1.6, **s1**: 0.9, **s2**: 0.2

### SD2.1
~~**b1**: 1.1, **b2**: 1.2, **s1**: 0.9, **s2**: 0.2~~

**b1**: 1.4, **b2**: 1.6, **s1**: 0.9, **s2**: 0.2

### SDXL
**b1**: 1.3, **b2**: 1.4, **s1**: 0.9, **s2**: 0.2
[SDXL results](https://www.youtube.com/watch?v=jTcGZKkifsA&t=1s)

### Range for More Parameters
When trying additional parameters, consider the following ranges:
- **b1**: 1 ≤ b1 ≤ 1.2
- **b2**: 1.2 ≤ b2 ≤ 1.6
- **s1**: s1 ≤ 1
- **s2**: s2 ≤ 1

# Results from the community
If you tried FreeU and want to share your results, let me know and we can put up the link here.

- [SDXL](https://wandb.ai/nasirk24/UNET-FreeU-SDXL/reports/FreeU-SDXL-Optimal-Parameters--Vmlldzo1NDg4NTUw?accessToken=6745kr9rjd6e9yjevkr9bpd2lm6dpn6j00428gz5l60jrhl3gj4gubrz4aepupda) from [Nasir Khalid](https://wandb.ai/nasirk24)
- [comfyUI](https://twitter.com/bramvera/status/1706190498220884007) from [Abraham](https://twitter.com/bramvera)
- [SD2.1](https://twitter.com/justindujardin/status/1706021278963179612) from [Justin DuJardin](https://twitter.com/justindujardin)
- [SDXL](https://twitter.com/seb_cawai/status/1705948389874000374) from [Sebastian](https://twitter.com/seb_cawai)
- [SDXL](https://twitter.com/tintwotin/status/1706318393312223346) from [tintwotin](https://twitter.com/tintwotin)
- [ComfyUI-FreeU](https://www.youtube.com/watch?v=8XJH6uZjNzA&t=297s) (YouTube)
- [ComfyUI-FreeU](https://www.bilibili.com/video/BV1om4y1G7TX/) (中文)
- [Rerender](https://github.com/williamyang1991/Rerender_A_Video#freeu)
- [Collaborative-Diffusion](https://github.com/ziqihuangg/Collaborative-Diffusion/tree/master/freeu)

# BibTeX
```
@inproceedings{si2023freeu,
title={FreeU: Free Lunch in Diffusion U-Net},
author={Si, Chenyang and Huang, Ziqi and Jiang, Yuming and Liu, Ziwei},
booktitle={CVPR},
year={2024}
}
```
## :newspaper_roll: License

Distributed under the MIT License. See [LICENSE](LICENSE) for more information.