Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/CheriseZhu/GSSNN

The implementation of our AAAI 2020 paper "GSSNN: Graph Smoothing Splines Neural Network".
https://github.com/CheriseZhu/GSSNN

Last synced: 2 months ago
JSON representation

The implementation of our AAAI 2020 paper "GSSNN: Graph Smoothing Splines Neural Network".

Awesome Lists containing this project

README

        

# GSSNN
The implementation of our AAAI 2020 paper "[GSSNN: Graph Smoothing Splines Neural Network](https://www.researchgate.net/publication/337548602_GSSNN_Graph_Smoothing_Splines_Neural_Networks)".

# Requirements
python == 3.6.2

torch == 1.1.0

numpy == 1.16.4

scipy == 1.2.0

networkx == 2.2

torch_scatter == 1.3.0

torch_geometric == 1.3.0

# How to use
### Dataset
The data folder includes our propocessed data for training and testing.

The orginal datasets can be founded from [here](https://ls11-www.cs.tu-dortmund.de/people/morris/graphkerneldatasets).

### Model
The model folder includes our proposed model "GSSNN".

The model/utils folder includes graph utils and Scaled Smoothing Splines module used in model.

The model/process_data file processes data and computes the graph centrality.

The torch_geometeric/nn/pool folder includes the designed NodeImportance layer used in model.

The torch_geometeric/nn/conv folder includes the convolutional layers used in model provides by [torch_geometeric](https://github.com/rusty1s/pytorch_geometric) library.


### Prameters Setting
dim: the hidden dimension of node feature

conv_layer: the number of convolutional layer

ss_layer: the number of smoothing splines layer

Mi: the number of knot used in smoothing splines layer i

epsilon: used in smoothing splines to guarantee the denominator non-zero

add_knot: whether to consider the important nodes features as residual connection to the graph-level representation


### Training/Testing
```
cd model
python process_data.py --dataset MUTAG
python GSSNN.py --dataset MUTAG --batch_size 128 --lr 0.01 --weight_decay 5e-4 --dim 32 --conv_layer 3 --ss_layer 2 --M1 5 --M2 5 --epsilon 1e-6 --add_knot True --epoch 100
python GSSNN_10_folds.py --dataset MUTAG --batch_size 128 --lr 0.01 --weight_decay 5e-4 --dim 32 --conv_layer 3 --ss_layer 2 --M1 5 --M2 5 --epsilon 1e-6 --add_knot True --epoch 100
```


# Citation
```
@inproceedings{zhu2020GSSNN
author={Shichao Zhu and Lewei Zhou and Shirui Pan and Chuan Zhou and Guiying Yan and Bin Wang},
title={GSSNN: Graph Smoothing Splines Neural Network},
journal={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
year={2020}
}
```