Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ChiShengChen/ResVMamba

The official repository implement of Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning
https://github.com/ChiShengChen/ResVMamba

deep-learning food-classification mamba

Last synced: 3 months ago
JSON representation

The official repository implement of Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning

Awesome Lists containing this project

README

        

# ResVMamba
[![arXiv](https://img.shields.io/badge/arXiv-2402.15761-b31b1b.svg?style=flat-square)](https://arxiv.org/abs/2402.15761)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/res-vmamba-fine-grained-food-category-visual/fine-grained-image-recognition-on-cnfood-241)](https://paperswithcode.com/sota/fine-grained-image-recognition-on-cnfood-241?p=res-vmamba-fine-grained-food-category-visual)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)]([https://huggingface.co/ms57rd/Res-VMamba]) ![PRs Welcome](https://img.shields.io/badge/PRs-Welcome-green) ![Stars](https://img.shields.io/github/stars/ChiShengChen/ResVMamba)

The official repository of [Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning](https://arxiv.org/abs/2402.15761) , the most part of code is modified from [VMamba](https://github.com/MzeroMiko/VMamba) .

## Get started
Please follw the installation flow on [VMamba](https://github.com/MzeroMiko/VMamba).

### Pretrained-weight
The Res-VMamba model best weight with VMamba-S as backbone trained on CNFOOD-241-Chen (CNFOOD-241 dataset with the random split in the paper) can be available on the [HuggingFace](https://huggingface.co/ms57rd/Res-VMamba/tree/main) .
The downloaded weight need to put under the folder path:
`./ResVMamba/pretrained_model/vssm_small/default/ckpt_epoch_166.pth`

### Run Command
For has only 1 GPU card:
```
python3 -m torch.distributed.launch --nnodes=1 --node_rank=0 --nproc_per_node=1 --master_addr="127.0.0.1" --master_port=29501 main.py --cfg configs/vssm/vssm_small_224.yaml --batch-size 16 --data-path /food_data/CNFOOD-241 --output ./ResVMamba/pretrained_model
```

## CNFOOD-241-Chen dataset

The image list can be found in `CNFOOD241_data_split` folder.

## Training Result on paper
![Screenshot from 2024-03-27 01-20-07](https://github.com/ChiShengChen/ResVMamba/assets/22126443/653d4086-b227-4bbe-953d-72f1a928edc3)

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=ChiShengChen/ResVMamba&type=Date)](https://star-history.com/#ChiShengChen/ResVMamba&Date)

## Reference
The original CNFOOD-241 data: https://data.mendeley.com/datasets/fspyss5zbb/1

## Citation
Hope this code is helpful. I would appreciate you citing us in your paper. 😊
```
@misc{chen2024resvmamba,
title = {Res-VMamba: Fine-Grained Food Category Visual Classification Using Selective State Space Models with Deep Residual Learning},
author = {Chen, Chi-Sheng and Chen, Guan-Ying and Zhou, Dong and Jiang, Di and Chen, Dai-Shi},
year = {2024},
month = Feb,
number = {arXiv:2402.15761},
eprint = {2402.15761},
primaryclass = {cs, eess, cv},
publisher = {{arXiv}},
doi = {10.48550/arXiv.2402.15761},
archiveprefix = {arxiv}
}
```